Теория турбинной ступени_РЕДАКТИРОВАННАЯ_2. Лекции по дисциплине Судовые турбинные установки и их эксплуатация Керчь, 2008 г. Удк 621
Скачать 1.65 Mb.
|
9.1 Профильные потери энергии. Профильные потери объединяют группу потерь, зависящих от конфигурации профиля и шероховатости его поверхности; потери от трения в пограничном слое, потери от срыва пограничного слоя, кромочные потери, волновые потери . 9.1.1 Потери от трения в пограничном слое. Потери от трения в пограничном слое возникают из-за вязкости рабочей среды в связи с движением частичек газа с различной скоростью по толщине пограничного слоя. В ядре потока, где скорости частичек мало меняются, потери от трения, как и другие гидравлические потери отсутствуют . Потери от трения в пограничном слое зависят от толщины пограничного слоя и характера движения в нем рабочей среды. В свою очередь, толщина пограничного слоя определяется степенью шероховатости поверхности лопаток и числом Re. В зависимости от Re движение среды в пограничном слое может быть ламинарным или турбулентным. На некотором участке профиля существует переходная область движения. Потери энергии в турбулентном пограничном слое существенно больше, чем в ламинарном. Рис.9.1 Схема пограничного слоя на профиле: а - эпюра скоростей в пограничном слое; б - образование диффузорного участка. Толщина пограничного слоя δ и эпюра скоростей в нем меняются по контуру профиля (рис.9.1,а). У входной кромки толщина пограничного слоя невелика, движение среды в слое обычно ламинарное. За входной кромкой толщина пограничного слоя увеличивается, особенно на вогнутой поверхности, с учетом торможения потока лопаткой. В дальнейшем пограничный слой на вогнутой поверхности ближе к выходной кромке начинает уменьшаться в связи с интенсивным ускорением потока. Ламинарное течение в слое на некотором участке переходит в турбулентное. На спинке толщина пограничного слоя быстро уменьшается на участке за наибольшей кривизной профиля, где наблюдается самое резкое увеличение скорости, и вновь возрастает у входной кромки в связи с уменьшением скорости из-за образования диффузорного участка (рис.9.1,б). Приведенные на рис.9.1 схема пограничного слоя и эпюры скоростей характерны для безотрывного обтекания потоком лопатки, что имеет место при небольшом угле атаки. Последний для современ- ных рабочих лопаток с закругленной входной кромкой колеблется в пределах от +(2÷3)0 до –(38)0 Исследования показывают, что большая часть лопаточного аппарата паровых и газовых турбин, за исключением последних ступеней паровых турбин работает в зоне автомодельности по числу Re. Так как число Re является переменным по контуру профиля, для турбинных решеток оно определяется по формулам , . (9.3) где - соответственно хорда профиля сопловых и рабочих решеток; |