Ббагц6цд. Сеченовские лекции. Лекции по гистологии 12 курс ВесеннийОсенний семестр
Скачать 0.52 Mb.
|
йодопсин. Этот пигмент распадается под воздействием красного, синего или зеленого света . В-пятых, мембраны колбочек не подвергаются обновлению. Внутренний сегмент колбочек имеет такое же строение, как и в палочках, отличие заключается в том, что ядро колбочковых клеток более крупное, чем ядро палочковых. Общее число колбочковых нейронов составляет около 7 млн. Они лежат в центре сетчатки. Особенно велико их содержание в желтом пятне - области лучшего видения. Колбочковые клетки реагируют на свет высокой интенсивности, обеспечивая цветное дневное зрение. Механизм фоторецепции связан с распадом молекул родопсина и йодопсина подвоздействием световой энергии. Это запускает цепь реакций, изменяющих проницаемость мембран для ионов и вызывающих формирование нервного импульса. Наружная глиальная мембрана находится между слоем палочек и колбочек и наружным зернистым слоем. Образована отростками глиальных клеток-волокон. Наружный зернистый (ядерный) слой образован телами и ядрами фоторецепторных нейронов. Это наиболее выраженный из трех ядерных слоев сетчатки. Наружный сетчатый слой сформирован аксонами фоторецепторных нейронов,дендритами биполярных нейронов и синапсами между ними. Внутренний зернистый слой образован телами нескольких нейронов:биполярных, горизонтальных, амакриновых, интерплексиформных, а также ядрами глиальных клеток-волокон Мюллера. Дендриты биполярных нейронов образуют синапсы с аксонами фоторецепторных нейронов в наружном сетчатом слое, а их аксоны формируют синапсы с дендритами ганглионарных нейронов во внутреннем сетчатом слое. Горизонтальные нейроны имеют множество горизонтально идущих дендритов, которые образуют синапсы с несколькими фоторецепторными нейронами. Аксон горизонтального нейрона формирует синапс на границе между биполярной и фоторецепторной клетками. Через такие синапсы может проходить торможение, что увеличивает контрастность изображения. Амакриновые нейроны не имеют дендритов, их заменяет тело клетки, выполняющее роль синаптической поверхности. Аксон ветвится и образует связи с несколькими ганглионарными, а также биполярными нейронами. Функция амакриновых нейронов та же, что и у горизонтальных клеток. Интерплексиформные нейроны выполняют ассоциативную функцию. Глиальные клетки-волокна Мюллера имеют протяженные отростки,которые идут вверх и вниз,соединяясь между собой на уровне 2 и 3 слоями. Эти соединения формируют наружную глиальную пограничную мембрану. Внутренняя глиальная мембрана образована основаниями клеток-волокон Мюллера и их базальной мембраной. Она находится за слоем нервных волокон, отделяя его от стекловидного тела. От основных отростков клеток Мюллера отходит многочисленные вторичные отростки, которые окружают тела нейронов сетчатки и их синапсы, выполняя опорную функцию. Кроме того, отростки окружают стенки ретинальных капилляров, участвуя в формировании гематоретинального барьера. Несмотря на такое разнообразие клеток его формирующих, внутренний ядерный слой заметно тоньше, чем наружный. Внутренний сетчатый слой образован аксонами биполярных нейронов и дендритами ганглионарных нейронов. Здесь же находятся синапсы между этими отростками. Ганглионарный слой образован ядрами ганглионарных нейронов.Эти нейронысамые крупные в сетчатке, но их меньше всего. В результате убывания клеток от наружных слоев к внутренним происходит конвергенция нервных импульсов в https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54 Стр. 111 из 172 сетчатке. Так, на одном биполярном нейроне образуются синапсы нескольких фоторецепторных клеток. В свою очередь, несколько биполярных клеток контактируют с одним ганглионарным нейроном. В результате число нервных волокон зрительном нерве примерно в 100 раз меньше числа фоторецепторных нейронов. Конвергенция отсутствует в области желтого пятна, где каждому фоторецепторному соответствует отдельный биполярный нейрон. Слой нервных волокон образован аксонами ганглионарных нейронов.Нервныеволокна сетчатки находятся в слепом пятне, окружаются миелиновой оболочкой, проходят через всю сетчатку и формируют зрительный нерв, в котором волокна перекрещиваются и идут в таламус. Внутренняя глиальная пограничная мембрана находится ниже слоя нервныхволокон. Образована соединением оснований и отростков клеток-волокон Мюллера и их базальной мембраной. Диоптрический аппарат глаза Роговица —прозрачная часть наружной фиброзной оболочки глаза склеры.Онасостоит из пяти слоев: наружный эпителий является многослойным плоским неороговевающим эпителием, который состоит из трех слоев — базального, шиповатого и слоя плоских клеток. В эпителии содержится большое количество свободных нервных окончаний, обусловливающих высокую чувствительность роговицы. Передний эпителий роговицы в области лимба переходит в эпителий конъюнктивы глаза; передняя пограничная (боуменова) мембрана. Образована упорядочено, в виде трехмерной сети, расположенными коллагеновыми волокнами. Играет роль базальной мембраны; собственное вещество роговицы. Образовано оформленной плотной волокнистой соединительной тканью. Оно состоит из параллельно лежащих коллагеновых волокон, основного вещества и расположенных между волокнами фиброцитов. Собственное вещество роговицы продолжается в склеруплотную непрозрачную оболочку. Место перехода называется лимбом. Здесь содержится большое количество сосудов, из которых питаются наружные отделы роговицы. Питание ее центральных отделов происходит за счет веществ, содержащихся в жидкости передней камеры глаза; задняя пограничная (десцеметова) мембрана имеет такое же строение, как и наружная мембрана; задний эпителий — однослойный плоский эпителий (часто называется эндотелием). роговице нет собственных сосудов, питание идет за счет диффузии веществ из передней камеры глаза и кровеносных сосудов лимба. При воспалении сосуды из лимба могут проникать в собственное вещество роговицы, что создает ее непрозрачность (катаракта). Роговица богато иннервируется, нервы лежат не только в собственном веществе, но и в переднем эпителии. Факторы, обеспечивающие прозрачность роговицы: идеально ровная поверхность переднего эпителия, при травмах, образовании язв роговицы эта ровная поверхность нарушается, что ведет к появлению непрозрачных участков; отсутствие в собственном веществе сосудов, при воспалении они могут врастать в него из лимба, что нарушает прозрачность; низкое содержание в собственном веществе роговицы воды, при воспалениях роговицы (кератитах) происходит увеличение содержания воды, и прозрачность роговицы теряется (катаракта); высокая степень упорядоченности расположения коллагеновых волокон в пограничных мембранах и собственном веществе роговицы. Хрусталик развивается из материала эктодермы,превращающейся под влияниемглазного бокала в хрусталиковый пузырек. Этот пузырек отделяется от эктодермы и https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54 Стр. 112 из 172 погружается в полость глазного бокала. Передняя стенка хрусталикового пузырька состоит из однослойного кубического эпителия, а заднюю стенку образуют удлиненные клетки, которые называются хрусталиковыми волокнами. По мере их роста полость пузырька исчезает. В центре хрусталика из первичных хрусталиковых волокон образуется ядро хрусталика. В дальнейшем за счет пролиферации клеток, находящихся в экваториальной части, образуются вторичные хрусталиковые волокна. Хрусталик снаружи покрыт капсулой — утолщенной базальной мембраной. Капсула содержит гликопротеины и сеть микрофиламентов,обеспечивающиеэластичность хрусталика. На передней поверхности хрусталика под его капсулой сохраняется однослойный эпителий. На экваторе его клетки способны к митотическому делению (ростковая зона). После его завершения эти клетки формируют новые хрусталиковые волокна. Клетки заднего эпителия также формируют хрусталиковые волокна. Цитоплазма хрусталиковых волокон содержит прозрачное вещество кристаллин. В центре хрусталиковые волокна уплотняются, теряют ядра, наслаиваются друг на друга и формируют ядро хрусталика. Внутри хрусталика отсутствуют нервы и кровеносные сосуды, что обеспечивает его прозрачность. Внутри глаза хрусталик поддерживается с помощью нитей цилиарной (цинновой) связки, которая прикрепляется к капсуле. Изменение степени натяжения нитей меняет кривизну хрусталика, при этом изменяется и его преломляющая способность. Благодаря этому возможна аккомодация - способность четкого видения различно удаленных предметов. У молодых людей хрусталик обладает высокой эластичностью, которая постепенно теряется с возрастом. Это ведет нарушению восприятия близко расположенных объектов (пресбиопия). При старении также может нарушаться прозрачность хрусталика и его капсулы — возникает хрусталиковая катаракта. Стекловидное тело —это основная преломляющая среда глаза.Помимо этойнаиболее важной функции стекловидное тело участвует в обменных процессах сетчатки, а также фиксирует хрусталик и препятствует (в норме) отслоению сетчатки от пигментного эпителия. Оно представлено межклеточным веществом (99 % воды и белок витреин), которое преобладает, и единичными клетками (фиброциты, макрофаги лимфоциты). Аккомодационный аппарат глаза Сосудистая оболочка состоит из трех частей:собственно сосудистойоболочки, цилиарного тела и радужки. Главная функция собственно сосудистой оболочки — питание сетчатки. Она также участвует в регуляции внутриглазного давления. Пигмент, содержащийся в этой оболочке, поглощает избыток света. В результате сокращения цилиарной мышцы (части сосудистой оболочки) может изменяться длина оптической оси глаза, таким образом сосудистая оболочка участвует в аккомодации. Радужная оболочка лежит перед хрусталиком.Имеет вид пластинки,в центрекоторой находится зрачок. В радужке выделяют 5 слоев: передний эпителий — продолжение заднего эпителия роговицы; наружный пограничный слой содержит рыхлую волокнистую неоформленную соединительную ткань с фибробластами и меланоцитами; сосудистый слой также образован рыхлой волокнистой неоформленной соединительной тканью, содержит сосуды, меланоциты; внутренний пограничный слой имеет такое же строение, как и наружный пограничный слой; внутренний эпителий или пигментный слой. радужке содержатся две мышцы: суживающая и расширяющая зрачок. Эти мышцы образованы мионевральной тканью и находятся: первая — в околозрачковой зоне сосудистого слоя, вторая — в сосудистом и частично внутреннем пограничном https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54 Стр. 113 из 172 слоях. Мышца, суживающая зрачок, иннервируется парасимпатической нервной системой, а мышца, расширяющая зрачок — симпатической нервной системой. месте прикрепления передней поверхности радужки к склере и реснитчатому телу (угол передней камеры глаза) находятся трабекулы, которые составляют гребенчатую связку.Между трабекулами имеются фонтановы пространства,через нихосуществляется отток влаги из передней камеры глаза в шлеммов канал, который в свою очередь сообщается с венозным синусом. Венозный синус располагается циркулярно вокруг шлеммова канала. Шлеммов канал и венозный синус обеспечивают отток внутриглазной жидкости в венозную систему глаза. Сужение просвета канала при патологии ведет к повышению внутриглазного давления, что в тяжелых случаях вызывает гибель нейронов сетчатки и слепоту. Реснитчатое тело состоит из двух частей:внутренняя— цилиарная корона; наружная — цилиарное кольцо. Основу цилиарного тела составляет цилиарная мышца, образованная гладкой мышечной тканью. Ее пучки имеют циркулярное направление во внутренних отделах и радиальное в наружных. От поверхности цилиарного тела отходят цилиарные отростки, к которым прикрепляются нити цинновой связки. Расслабление цилиарной мышцы вызывает натяжении цинновой связки и уплощение хрусталика. Сокращение мышцы, наоборот, вызывает расслабление цинновой связки, хрусталик в силу своей упругости становится более выпуклым, его преломляющая способность увеличивается. Покрывающий цилиарные отростки двуслойный кубический эпителий образован внутренним слоем непигментированных и наружным слоем пигментированных клеток. Клетки каждого слоя имеют собственную базальную мембрану. Этот эпителий выполняет две основные функции: вырабатывает внутриглазную жидкость; участвует в формировании барьера между кровью и внутриглазной жидкостью. Нейронный состав зрительного анализатора: 1 — нейрон — фоторецепторный; 2 — нейрон — биполярный; 3 — нейрон — ганглионарный; тело 4 нейрона расположено в зрительном бугре, аксон этого нейрона идет к нейронам зрительной зоны коры больших полушарий. Гемоофтальмический барьер —это барьер между кровью в кровеносныхкапиллярах сетчатки, нейроцитами сетчатки и волокнами зрительного нерва. Гемоофтальмический барьер находится в трех различных участках: между сосудами сосудистой оболочки и фоторецепторными нейронами. В состав данного барьера входят эндотелий и базальная мембрана капилляров сосудистой оболочки, соединительная ткань базальной пластинки, базальная мембрана пигментного эпителия, пигментный эпителий; внутри сетчатки, этот барьер образован эндотелием внутрисетчаточных гемокапилляров и их базальной мембраной, наружной глиальной пограничной мембраной, образованной отростками астроцитарной глии сетчатки, отростками клеток-волокон Мюллера, окружающими как гемокапилляры, так и тела нейронов сетчатки. в зрительном нерве, он образован эндотелием и базальной мембраной капилляров нерва. ЛЕКЦИЯ 15. Сердечно-сосудистая система Функции и развитие сердечно-сосудистой системы Строение сердца Строение артерий Строение вен Микроциркуляторное русло https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54 Стр. 114 из 172 Лимфатические сосуды Сердечно-сосудистая система образована сердцем, кровеносными и лимфатическими сосудами. Функции сердечно-сосудистой системы: транспортная — обеспечение циркуляции крови и лимфы в организме, транспорт их к органам и от органов. Эта фундаментальная функция складывается из трофической (доставка к органам, тканям и клеткам питательных веществ), дыхательной (транспорт кислорода и углекислого газа) и экскреторная (транспорт конечных продуктов обмена веществ к органам выделения) функции; интегративная функция — объединение органов и систем органов в единый организм; регуляторная функция, наряду с нервной, эндокринной и иммунной системами сердечно-сосудистая система относится к числу регуляторных систем организма. Она способна регулировать функции органов, тканей и клеток путем доставки к ним медиаторов, биологически активных веществ, гормонов и других, а также путем изменения кровоснабжения; сердечно-сосудистая система участвует в иммунных, воспалительных и других общепатологических процессах (метастазирование злокачественных опухолей и других). Развитие сердечно-сосудистой системы Сосуды развиваются из мезенхимы. Различают первичный и вторичный ангиогенез.Первичный ангиогенез или васкулогенез,представляет собой процесснепосредственного, первоначального образования сосудистой стенки из мезенхимы. Вторичный ангиогенез — формирование сосудов путем их отрастания от уже имеющихся сосудистых структур. Первичный ангиогенез Кровеносные сосуды образуются в стенке желточного мешка на 3-ей неделе эмбриогенеза под индуктивным влиянием входящей в его состав энтодермы. Сначала из мезенхимы формируются кровяные островки. Клетки островков дифференцируются в двух направлениях: гематогенная линия дает начало клеткам крови; ангиогенная линия дает начало первичным эндотелиальным клеткам, которые соединяются друг с другом и образуют стенки кровеносных сосудов. теле зародыша кровеносные сосуды развиваются позднее (во второй половине третьей недели) из мезенхимы, клетки которой превращаются в эндотелиоциты. В конце третьей недели первичные кровеносные сосуды желточного мешка соединяются кровеносными сосудами тела зародыша. После начала циркуляции крови по сосудам их строение усложняется, кроме эндотелия в стенке образуются оболочки, состоящие из мышечных и соединительнотканных элементов. |