Главная страница

Ббагц6цд. Сеченовские лекции. Лекции по гистологии 12 курс ВесеннийОсенний семестр


Скачать 0.52 Mb.
НазваниеЛекции по гистологии 12 курс ВесеннийОсенний семестр
АнкорБбагц6цд
Дата18.04.2022
Размер0.52 Mb.
Формат файлаdocx
Имя файлаСеченовские лекции.docx
ТипЛекции
#483647
страница2 из 35
1   2   3   4   5   6   7   8   9   ...   35
Из тканей жидкой консистенции (кровь,костный мозг и другие)изготавливаются препараты в виде мазка на предметном стекле, которые также фиксируются, окрашиваются, а затем изучаются.
Из ломких паренхиматозных органов (печень,почка и другие)изготавливаютсяпрепараты в виде отпечатка органа: после разлома или разрыва органа, к месту разлома органа прикладывается предметное стекло, на которое приклеиваются некоторые свободные клетки. Затем препарат фиксируется, окрашивается и изучается.
Наконец, из некоторых органов (брыжейка,мягкая мозговая оболочка)или изрыхлой волокнистой соединительной ткани изготавливаются пленочные препараты путем растягивания или раздавливания между двумя стеклами, также с последующей фиксацией, окраской и заливкой в смолы.


    • Основным методом исследования биологических объектов, используемым в гистологии является микроскопирование, т. е. изучение гистологических препаратов по микроскопом. Микроскопия может быть самостоятельным методом изучения, но в последнее время она обычно сочетается с другими методами (гистохимии, гисторадиографии и другие). Следует помнить, что для микроскопии используются разные конструкции микроскопов, позволяющие изучить разные параметры изучаемых объектов. Различают следующие виды микроскопии:




  • световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;





ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);
люминесцентная (флюоресцентная) микроскопия для определения химических веществ
в рассматриваемых структурах;
фазово-контрастная микроскопия для изучения структур в неокрашенных
гистологических препаратов;


https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 8 из 172





поляризационная микроскопия для изучения, главным образом, волокнистых структур; микроскопия в темном поле для изучения живых объектов; микроскопия в падающем свете для изучения толстых объектов;
электронная микроскопия (разрешающая способность до 0,1—0,7 нм), две ее


разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.
Гистохимические и цитохимические методы позволяет определять составхимических веществ и даже их количество в изучаемых структурах. Метод основан на проведении химических реакций с используемым реактивом и химическими веществами, находящимися в субстрате, с образованием продукта реакции (контрастного или флюоресцентного), который затем определяется при световой или люминесцентной микроскопии.
Метод гистоавторадиографии позволяет выявить состав химических веществ вструктурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод используется чаще всего в экспериментах на животных.
Метод дифференциального центрифугирования позволяет изучать отдельныеорганеллы или даже фрагменты, выделенные из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2-х до 150 тыс.) и получают интересующие фракции, которые затем изучают различными методами.
Метод интерферометрии позволяет определить сухую массу веществ в живыхили фиксированных объектах.
Иммуноморфологические методы позволяет с помощью предварительнопроведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов.
Метод культуры клеток (in vitro, in vivo)выращивание клеток в пробирке или вособых капсулах в организме и последующее изучение живых клеток под микроскопом.
Единицы измерения, используемые в гистологии
Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм.


  • В истории развития гистологии условно выделяют три периода:


Домикроскопический период (сIVв.до н.э.по1665г.)связан с именами
Аристотеля, Галена, Авиценны, Везалия, Фаллопия и характеризуется попытками выделения в организме животных и человека неоднородных тканей (твердых, мягких, жидких и так далее) и использованием методов анатомической препаровки.
Микроскопический период (с1665г.по1950г.).Начало периода связывают сименем английского физика Роберта Гука, который, во-первых, усовершенствовал микроскоп (полагают, что первые микроскопы были изобретены в самом начале XVII в.), во-вторых, использовал его для систематического исследования различных, в том числе биологических объектов и опубликовал результаты этих наблюдений в 1665 г. в книге "Микрография", в-третьих, впервые ввел термин "клетка" ("целлюля"). В дальнейшем осуществлялось непрерывное усовершенствование микроскопов и все более широкое использование их для изучения биологических тканей и органов.
Особое внимание уделялось изучению строения клетки. Ян Пуркинье описал наличие в животных клетках "протоплазмы" (цитоплазмы) и ядра, а несколько позже Р. Броун подтвердил наличие ядра и в большинстве животных клеток. Ботаник М. Шлейден заинтересовался происхождением клетокцитокенезисом. Результаты этих исследований позволили Т. Швану, на основании их сообщений, сформулировать клеточную теорию (1838—1839 гг.) в виде трех постулатов:

https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 9 из 172












все растительные и животные организмы состоят из клеток; все клетки развиваются по общему принципу из цитобластемы;
каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.
Однако вскоре Р. Вирхов (1858 г.) уточнил, что развитие клеток осуществляется путем деления исходной клетки (любая клетка из клетки). Разработанные Т. Шваном положения, клеточной теории актуальны до настоящего времени, хотя формулируется по-иному.
Современные положения клеточной теории:
клетка является наименьшей единицей живого;
клетки животных организмов сходны по своему строению;
размножение клеток происходит путем деления исходной клетки;
многоклеточные организмы представляют собой сложные ансамбли клеток и их
производных, объединенные в системы тканей и органов, связанные между собой клеточными, гуморальными и нервными формами регуляции.

Дальнейшее совершенствование микроскопов, особенно создание ахроматических объективов, позволило выявить в клетках более мелкие структуры:





клеточный центр Гертвиг, 1875 г.;
сетчатый аппарат или пластинчатый комплекс Гольджи, 1898 г.; митохондрии Бенда, 1898 г.
Современный этап развития гистологии начинается с1950г.с моментаначала использования электронного микроскопа для изучения биологических объектов, хотя электронный микроскоп был изобретен раньше (Е. Руска, М. Кноль, 1931 г.). Однако для современного этапа развития гистологии характерно внедрение не только электронного микроскопа, но и других методов: цито- и гистохимии, гисторадиографии и других вышеперечисленных современных методов. При этом обычно используется комплекс разнообразных методик, позволяющий составить не только качественное представление об изучаемых структурах, но и получить точные количественные характеристики. Особенно широко в настоящее время используются различные морфометрические методики, в том числе автоматизированные системы обработки полученной информации с использованием компьютеров.
ЛЕКЦИЯ 2. Цитология. Цитоплазма


  • Понятие цитология




  • Строение плазмолеммы







  • Состав гиалоплазмы




  • Классификация органелл




  • Строение общих органелл




  • Строение немембранных органелл




  • Классификация включений




  • Цитология наука о строении, развитии и жизнедеятельности клеток. Следовательно, цитология изучает закономерности структурно-функциональной организации первого (клеточного) уровня организации живой материи. Клетка является наименьшей единицей живой материи, обладающей самостоятельной жизнедеятельностью и способностью к самовоспроизведению. Субклеточные образования (ядро, митохондрии и другие органеллы) хотя и являются живыми структурами, но не обладают самостоятельной жизнедеятельностью.


Клетка элементарная единица живого,состоящая из цитоплазмы и ядра иявляющаяся основой строения, развития и жизнедеятельности всех животных и растительных организмов.
Основные компоненты клетки:


https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 10 из 172























ядро;
цитоплазма.
По соотношению ядра и цитоплазмы (ядерно-цитоплазматическое отношение)
клетки подразделяются на:
клетки ядерного типа объем ядра преобладает над объемом цитоплазмы; клетки цитоплазматического типа цитоплазма преобладает над ядром.
По форме клетки бывают:
круглыми (клетки крови);
плоскими;
кубическими или цилиндрическими (клетки разных эпителиев);
веретенообразными;
отростчатыми (нервные клетки) и другие.
Большинство клеток содержат одно ядро, однако могут быть в одной клетке 2, 3 и более ядер многоядерные клетки. В организме имеются структуры (симпласты, синтиций), содержащие несколько десятков или даже сотен ядер. Однако эти структуры образуются или в результате слияния отдельных клеток (симпласты), или в результате неполного деления клеток (синцитий). Морфология этих структур будет рассмотрена при изучении тканей.
Структурные компоненты цитоплазмы животной клетки:
плазмолемма (цитолемма);
гиалоплазма;
органеллы;
включения.
Плазмолемму, окружающую цитоплазму, нередко рассматривают как одну из органелл цитоплазмы.


  • Строение и функции плазмолеммы (цитолеммы)


Плазмолемма оболочка животной клетки,ограничивающая ее внутреннюю средуи обеспечивающая взаимодействие клетки с внеклеточной средой.
Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5— 10 % из углеводов (в составе гликокаликса), и на 50—55 % из белков.
Функции плазмолеммы:
разграничивающая (барьерная);
рецепторная или антигенная;
транспортная;
образование межклеточных контактов.
Основу строения плазмолеммы составляет двойной слой липидныхмолекулбилипидная мембрана, в которую местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой.
Строение билипидной мембраны
Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц.

https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 11 из 172










На электроннограмме в плазмолемме четко определяются три слоя наружный и внутренний электронноплотные, промежуточный с низкой электронной плотностью.

Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя. По локализации в мембране белки подразделяются на: интегральные пронизывают всю толщу билипидного слоя;
полуинтегральные включающиеся только в монослой липидов (наружный или
внутренний);
прилежащие к мембране, но не встроенные в нее.
По выполняемой функции белки плазмолеммы подразделяются на:
структурные белки;
транспортные белки;
рецепторные белки;
ферментные.





Находящиеся на внешней поверхности плазмолеммы белки, в также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Именно эти макромолекулы и составляют надмембранный слой — гликокаликс. В неделящейся клетке имеется подмембранный слой, образованный микротрубочками и микрофиламентами.
Значительная часть поверхностных гликопротеидов и гликолипидов выполняют


  • норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляют трансплантационные антигены или антигены гистосовместимости.


Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.
Различают следующие способы транспорта веществ:
пассивный транспорт способ диффузии веществ через плазмолемму (ионов, некоторых
низкомолекулярных веществ) без затраты энергии;
активный транспорт веществ с помощью белков-переносчиков с затратой энергии
(аминокислот, нуклеотидов и других);
везикулярный транспорт через посредство везикул (пузырьков), который
подразделяется на эндоцитоз транспорт веществ в клетку, и экзоцитозтранспорт веществ из клетки.

  • свою очередь эндоцитоз подразделяется на:






фагоцитоз захват и перемещение в клетку крупных частиц (клеток или фрагментов,
бактерий, макромолекул и так далее);
пиноцитоз перенос воды и небольших молекул.
Процесс фагоцитоза подразделяется несколько фаз:
адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;
поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков — фагосомы и передвижения ее в гиалоплазму


  • Строение и функции межклеточных контактов




  • тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и другие) между плазмолеммами контактирующих клеток формируются связи — межклеточные контакты.


https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 12 из 172








Типы межклеточных контактов:
простой контакт;
десмосомный контакт;
плотный контакт;
щелевидный или нексус;
синаптический контакт или синапс.
Простые контакты занимают наиболее обширные участки соприкасающихсяклеток. Расстояние между билипидными мембранами соседних клеток составляет 15— 20 нм, а связь между клетками осуществляется за счет взаимодействия макромолекул соприкасающихся гликокаликсов. Посредством простых контактов осуществляется слабая механическая связь — адгезия, не препятствующая транспорту веществ в межклеточных пространствах. Разновидностью простого контакта является контакт "типа замка", когда плазмолеммы соседних клеток вместе с участком цитоплазмы как бы впячивается в друг друга (интердигитация), чем достигается большая поверхность соприкосновения и более прочная механическая связь.
Десмосомные контакты или пятна сцепления представляют собой небольшиеучастки взаимодействия между клетками, диаметром около 0,5 мкм. Каждый такой участок (десмосома) имеет трехслойное строение и состоит из двух десмосомэлектронноплотных участков, расположенных в цитоплазме в местах контакта клеток, и скопления электронноплотного материала в межмембранном пространстве (15 20 нм). Количество десмосом на одной клетке может достигать 2 000. Функциональная роль десмосом обеспечение механической связи между клетками.
Плотные соединения или замыкательные пластинки обычно локализуютсямежду эпителиальными клетками в тех органах (в желудке, кишечнике и других), в которых эпителий отграничивает агрессивное содержимое этих органов (желудочный сок, кишечный сок). Плотные контакты находятся только между апикальными частями эпителиальных клеток, охватывая по всему периметру каждую клетку. В этих участках межмембранные пространства отсутствуют, а билипидные слои соседних плазмолемм сливаются в одну общую билипидную мембрану. В прилежащих участках цитоплазмы соприкасающихся клеток отмечается скопление электронноплотного материала. Функциональная роль плотных контактов — прочная механическая связь клеток, препятствие транспорту веществ по межклеточным пространствам.
1   2   3   4   5   6   7   8   9   ...   35


написать администратору сайта