Главная страница

Конспект лекций. Лекция История развития систем и сетей передачи данных Цель и задачи дисциплины, её место в направлении обучения и связь с другими дисциплинами. Цель преподавания дисциплины


Скачать 1.98 Mb.
НазваниеЛекция История развития систем и сетей передачи данных Цель и задачи дисциплины, её место в направлении обучения и связь с другими дисциплинами. Цель преподавания дисциплины
Дата21.09.2022
Размер1.98 Mb.
Формат файлаdocx
Имя файлаКонспект лекций.docx
ТипЛекция
#689313
страница3 из 11
1   2   3   4   5   6   7   8   9   10   11

Классификация сетей ЭВМ

Классификация сетей ЭВМ (компьютерных сетей), как любых больших и сложных систем, может быть выполнена на основе различных признаков, в качестве которых могут быть использованы (рис. 1.14):

• размер (территориальный охват) сети;

• принадлежность;

• назначение;

• область применения

 

1. По размеру (территориальному охвату) сети ЭВМ делятся на:

• персональные;

• локальные;

• городские (региональные).

• глобальные.

Персональная сеть {Personal Area Network, PAN) — это сеть, объединяющая персональные электронные устройства пользователя (телефоны, карманные персональные компьютеры, смартфоны, ноутбуки и т.п.) и характеризующаяся:

• небольшим числом абонентов;

• малым радиусом действия (до нескольких десятков метров);

• некритичностью к отказам.

К стандартам таких сетей в настоящее время относятся Bluetooth, Zigbee, Пиконет.

Локальная вычислительная сеть (ЛВС) (Local Area Network, LAN)

сеть со скоростью передачи данных, как правило, не менее 1 Мбит/с,
обеспечивающая связь на небольших расстояниях - от нескольких
десятков метров до нескольких километров. Оборудование, подключаемое
к ЛВС, может находиться в одном или нескольких соседних зданиях.

Примеры ЛВС: Ethernet, Token Ring.

Городская вычислительная сеть (Metropolitan Area Network, MAN)

сеть, промежуточная по размеру между ЛВС и глобальной сетью.
Протоколы и кабельная система для городской вычислительной сети
описываются в стандартах комитета IEEE 802.6. MAN реализуется на
основе протокола DQDB (Distributed Queue Dual Bus) - двойная шина с распределенной очередью и использует волоконно-оптический кабель для передачи данных со скоростью 100 Мбит/с на территории до 100 км2. MAN может применяться для объединения в одну сеть группы сетей, расположенных в разных зданиях. Последние разработки, связанные с высокоскоростным беспроводным доступом в соответствии со стандартом IEEE 802.16, привели к созданию MAN в виде широкополосных беспроводных ЛВС.

Глобальная сеть (Wide Area Network, WAN) - в отличие от ЛВС охватывает большую территорию и представляет собой объединение нескольких ЛВС, связанных с помощью специального сетевого оборудования (маршрутизаторов, коммутаторов и шлюзов), образующих в случае использования высокоскоростных каналов магистральную сеть передачи данных (магистральную сеть связи). Наиболее широкое применение находят глобальные сети для нужд информационного обмена в коммерческих, научных и других профессиональных целях.

Для построения глобальных сетей могут использоваться различные сетевые технологии, в том числе TCP/IP, Х.25, Frame Relay, ATM, MPLS.

Настоящей глобальной сетью, пожалуй, можно считать только сеть Интернет. Вряд ли глобальной можно считать сеть, объединяющую 2-3 ЛВС, находящиеся в разных городах, расположенных на расстоянии нескольких десятков или даже сотен километров друг от друга. Однако, поскольку для построения такой «простой» сети используются обычно те же сетевые технологии и технические средства, что и в сети Интернет, то такие сети обычно тоже относят к классу глобальных сетей.

2. По принадлежности сети ЭВМ делятся на:

• офисные - сети, расположенные на территории офиса компании, ограниченной обычно пределами одного здания, и построенные на технологиях LAN;

• корпоративные (ведомственные) - сети, представляющие собой объединение нескольких офисных сетей компании, расположенных в разных территориально разнесенных зданиях, находящихся возможно в разных городах и регионах, и построенные на технологиях MAN или WAN;

• частные - сети, построенные обычно на технологии виртуальной частной сети{Virtual Private Network, VPN), позволяющей обеспечить одно или несколько сетевых соединений, которые могут быть трёх видов: узел-узел, узел-сеть и сеть-сеть, образующих логическую сеть поверх другой сети (например, Интернет).

3. По назначению сети ЭВМ делятся на:

• вычислительные, предназначенные для решения задач пользователей, ориентированных, в основном, на вычисления;

• информационные, ориентированные на предоставление информационных услуг; примерами таких сетей могут служить сети, предоставляющие справочные и библиотечные услуги;

• информационно-вычислительные, предназначенные для решения задач пользователей и предоставления информационных услуг;

• информационно-управляющие, предназначенные для управления реальными объектами и процессами.

4. По области применения сети можно разделить на:

• сети хранения данных;

• серверные фермы.

Сеть хранения данных (СХД) {Storage Area Network, SAN) представляет собой множество внешних устройств хранения данных, таких как дисковые массивы, ленточные библиотеки, оптические накопители, подключённые к серверам, при этом операционная система рассматривает подключённые ресурсы, как локальные.

Следует не путать сеть хранения данных с сетевой системой хранения данных (Network Attached Storage, NAS), представляющей собой компьютер с дисковым массивом, подключенный обычно к локальной сети и поддерживающий работу по принятым в этой сети протоколам. Часто диски в NAS объединены в RAID массив. Несколько таких компьютеров могут быть объединены в одну систему, обеспечивая надёжность хранения данных, простой доступ для пользователей и хорошую масштабируемость.

Серверная ферма — это множество серверов, соединенных сетью передачи данных и работающих как единое целое. Серверная ферма обычно является ядром крупного центра обработки данных (ЦОД), обеспечивающего распределенную обработку данных.

К перечисленным типам сетей следует добавить:

• беспроводные ЛВС;

• виртуальные локальные вычислительные сети;

• иерархические сети;

Беспроводная ЛВС (wireless LAN - WLAN) - локальная сеть, использующая для передачи данных инфракрасное излучение или чаще всего радиоволны.

Виртуальная локальная вычислительная сеть (ВЛВС) (virtual LAN - VLAN) - логическое объединение узлов локальной сети, позволяющее выделить пользователей одной рабочей группы с общими интересами в отдельный сетевой сегмент. При этом объединяемые узлы могут принадлежать различным физическим сегментам.

Иерархическая сеть (hierarchical network) - сеть, в которой главным вычислительным центром является одна хост-машина, а терминалами -остальные сетевые устройства. Это традиционная архитектура, противоположная современной архитектуре распределенных вычислений, в которых интеллектуальные рабочие станции играют более активную роль в вычислительном процессе.

Лекция 4. Администрирование компьютерных сетей

Важным требованием к любой компьютерной сети, обеспечивающим эффективное функционирование, является её управляемость, заключающаяся в возможности:

• централизованного наблюдения и контроля состояния основных элементов сети, отдельных подсистем и сети в целом;

• выявления и устранения возникающих в процессе функционирования сети проблем, таких как сбои и отказы отдельных устройств сети, определение и устранение перегрузок и т.д.;

• сбора и анализа данных для оценки производительности сети и планирования развития сети;

• обеспечения информационной безопасности и защиты данных и т.п.

Для реализации перечисленных возможностей необходимо в сети иметь специальные автоматизированные средства администрирования, взаимодействующие с техническими и программными средствами сети с помощью коммуникационных протоколов.

Поддержка и обеспечение эффективного функционирования компьютерной сети за счет принятия своевременных организационных решений по управлению сетью на основе анализа характеристик функционирования и текущего состояния сети реализуется в рамках администрирования компьютерной сети сетевым администратором.

К основным функциям администрирования сети относятся:

• наблюдение за потоками данных;

• установка новых версий программного обеспечения;

• создание и поддержание таблиц маршрутизации и коммутации;

диагностика состояния компонентов сети;

• контроль ошибок и устранение простых отказов;

• замена отказавших узлов резервными;

• реконфигурация сети;

• поддержка отказоустойчивости компьютерной сети;

• добавление новых пользователей;

• определение прав пользователей сети при их обращении к разным ресурсам: файлам, каталогам, принтерам и т.д.;

• ограничение возможностей пользователей в выполнении тех или иных системных действий.

Типы данных

Первоначально сети ЭВМ строились для обработки и передачи компьютерных данных, представляемых в цифровой (дискретной) форме. Современные компьютерные сети ориентированы на передачу и обработку самых разнообразных данных, которые могут быть разделены на следующие типы (рис. 1.15).



1. Телеграфные данные дискретные данные, представляемые в виде импульсов постоянного или переменного тока, передаваемые по телеграфным каналам связи (ТгКС).

2. Телефонные (голосовые) данные речь в спектре частот от 80 до 12000 Гц, передаваемая по телефонным КС (ТфКС), называемым также каналами тональной частоты (ТЧ). Речь по таким каналам передаётся в ограниченной полосе частот от 300 Гц до 3400 Гц, что обеспечивает разборчивость фраз более 99%.

3. Факсимильные данные неподвижные изображения.

4. Аудиоданные (звуковое вещание) - в отличие от телефонных, кроме речи передается музыка, пение и т.п. в спектре частот от 20 Гц до 20 кГц. Для качественной передачи аудио данных достаточна полоса частот от 30 Гц до 15 кГц.

5. Видеоданные (телевизионное вещание) - совокупность
движущихся изображений и звукового сопровождения в спектре частот от
40 Гц до 6 МГц. В современных компьютерных сетях различают
видеоданные трёх типов, отличающиеся требованиями к качеству
передачи:

• видеоконференцсвязь, представляющая собой медленно изменяющиеся изображения и характеризующаяся невысокими требованиями к качеству передачи;

• телевизионное вещание обычного качества;

• телевизионное вещание высокой чёткости.

6. Символьные (цифровые, компьютерные) данные совокупность
символов, например двоичных символов в компьютерах.

Телеграфные и цифровые данные по своей природе относятся к дискретным данным, остальные - к непрерывным данным, но которые могут быть представлены (закодированы) в цифровой форме.

Телефонные, аудио- и видеоданные относятся к так называемым мультимедийным данным, к которым предъявляются специфические требования к качеству передачи по сравнению с обычными компьютерными (цифровыми) данными.

Многоуровневая организация вычислительных сетей

Требования к организации компьютерных сетей

Для обеспечения эффективного функционирования к компьютерным сетям предъявляются требования, основными среди которых являются (рис. 1.16):

1) открытость- возможность добавления в сеть новых компонентов (узлов и каналов связи, средств обработки данных) без изменения существующих технических и программных средств;

2) гибкость- сохранение работоспособности при изменении структуры сети в результате сбоев и отказов отдельных компонентов сети или при замене оборудования;

3) совместимость- возможность работы в сети оборудования разного типа и разных производителей;

4) масштабируемость- способность сети увеличивать свою производительность при добавлении ресурсов (узлов и каналов связи);

5) эффективность- обеспечение требуемого качества обслуживания пользователей, задаваемого в виде показателей производительности, временных задержек, надежности и т.д., при минимальных затратах.



Указанные требования реализуются за счет многоуровневой организации управления процессами в сети, в основе которой лежат понятия процесса, уровня, интерфейса и протокола(рис.1.17).





Понятия процесса и уровня

Функционирование вычислительных систем и сетей удобно описывать в терминах процессов.

Процесс динамический объект, реализующий целенаправленный акт обработки или передачи данных.

Процессы делятся на:

1) прикладные- обработка данных в ЭВМ и терминальном оборудовании, а также передача данных в СПД;

2) системные- обеспечение прикладных процессов (активизация терминала для прикладного процесса, организация связи между процессами и др.).

Данные между процессами передаются в виде сообщений через логические программно-организованные точки, называемые портами.

Порты разделяются на входные и выходные.

Промежуток времени, в течение которого взаимодействуют процессы, называется сеансом или сессией.

Вкаждом узле обработки данных (компьютере) могут одновременно выполняться несколько независимых прикладных процессов, связанных, например, с обработкой данных (такие процессы называются вычислитель­ными процессами). Эти процессы путём обмена сообщениями через соответствующие порты могут взаимодействовать с прикладными процессами, протекающими в других узлах вычислительной сети так, как это показано на рис. 1.18.

Здесь в узле 1 и 2 выполняются по 3 прикладных процесса Аь А2, Аи В], В2, В3 соответственно, а в узле 3 выполняется один прикладной процесс С. Эти процессы через соответствующие порты обмениваются сообщениями, причем процесс С обменивается сообщениями через два порта: входной, через который поступают сообщения от процесса В3, и выходной, который служит для передачи сообщений от процесса С к процессу Аь



Одним из основных понятий многоуровневой организации управления процессами в компьютерных сетях является понятие уровня, которое лежит в основе моделей всех сетевых технологий.

Уровень (layer) - понятие, позволяющее разделить всю совокупность функций обработки и передачи данных в вычислительной сети на несколько иерархических групп. На каждом уровне реализуются определенные функции обработки и передачи данных с помощью аппаратных и/или программных средств сети. Каждый уровень обслуживает вышележащий уровень и, в свою очередь, пользуется услугами нижележащего.

Модель взаимодействия открытых систем (OSI-модель)

Международная Организация по Стандартам (МОС, International Standards Organization - ISO) предложила в качестве стандарта открытых систем семиуровневую коммуникационную модель (рис. 1.19), известную как OSI-модель (Open Systems Interconnection) - модель Взаимодействия Открытых Систем (ВОС).



Каждый уровень OSI-модели отвечает за отдельные специфические функции в коммуникациях и реализуется техническими и программными средствами вычислительной сети.

Физический уровень

Уровень 1 - физический (physical layer) - самый низкий уровень OSI-модели, определяющий процесс прохождения сигналов через среду передачи между сетевыми устройствами (узлами сети).

Реализует управление каналом связи:

подключение и отключение канала связи;

формирование передаваемых сигналов и т.п. описывает:

механические, электрические и функциональные характеристики среды передачи;

средства для установления, поддержания и разъединения физического соединения.

Обеспечивает при необходимости:

кодирование данных;

модуляцию сигнала, передаваемого по среде.

Данные физического уровня представляют собой поток битов (последовательность нулей или единиц), закодированные в виде электрических, оптических или радиосигналов.

Из-за наличия помех, воздействующих на электрическую линию связи, достоверность передачи, измеряемая как вероятность искажения одного бита, составляет 10"4 - 10"6. Это означает, что в среднем на 10000 -1000000 бит передаваемых данных один бит оказывается искажённым.

Канальный уровень

Канальный уровеньили уровень передачи данных(data link layer) является вторым уровнем OSI-модели. Реализует управление:

доступом сетевых устройств к среде передачи, когда два или более устройств могут использовать одну и ту же среду передачи;

надежной передачей данных в канале связи, позволяющей увеличить достоверность передачи данных на 2-4 порядка.

Описывает методы доступа сетевых устройств к среде передачи, основанные, например, на передаче маркера или на соперничестве. Обеспечивает:

функциональные и процедурные средства для установления, поддержания и разрыва соединения;

управление потоком для предотвращения переполнения приемного устройства, если его скорость меньше, чем скорость передающего устройства;

надежную передачу данных через физический канал с вероятностью искажения данных 10" - 10" за счёт применения методов и средства контроля передаваемых данных и повторной передачи данных при обнаружении ошибки.

Таким образом, канальный уровень обеспечивает достаточно надежную передачу данных через ненадежный физический канал.

Блок данных, передаваемый на канальном уровне, называется кадром (frame).

На канальном уровне появляется свойство адресуемости передаваемых данных в виде физических (машинных) адресов, называемых также МАС-адресами и являющихся обычно уникальными идентификаторами сетевых устройств.

Как будет показано в разделе 3, универсальные МАС-адреса в ЛВС Ethernet и Token Ring являются 6-байтными и записываются в шестнадцатеричном виде, причём байты адреса разделены дефисом, например: 00-19-45-A2-B4-DE.

К процедурам канального уровня относятся:

добавление в кадры соответствующих адресов;

контроль ошибок;

повторная, при необходимости, передача кадров.

На канальном уровне работают ЛВС Ethernet, Token Ring и FDDI.

Сетевой уровень

Сетевой уровень (network layer), в отличие от двух предыдущих, отвечает за передачу данных в СПД и управляет маршрутизацией сообщений - передачей через несколько каналов связи по одной или нескольким сетям, что обычно требует включения в пакет сетевого адреса получателя.

Блок данных, передаваемый на сетевом уровне, называется пакетом (packet).

Сетевой адрес - это специфический идентификатор для каждой промежуточной сети между источником и приемником информации.

Сетевой уровень реализует:

обработку ошибок,

мультиплексирование пакетов;

управление потоками данных.

Самые известные протоколы этого уровня:

Х.25 в сетях с коммутацией пакетов;

IP в сетях TCP/IP;

IPX/SPX в сетях NetWare.

Кроме того, к сетевому уровню относятся протоколы построения маршрутных таблиц для маршрутизаторов: OSPF, RIP, ES-IS, IS-IS.

Транспортный уровень

Транспортный уровень(transport layer) наиболее интересен из высших уровней для администраторов и разработчиков сетей, так как он управляет сквозной передачей сообщений между оконечными узлами сети ("end-end"), обеспечивая надежность и экономическую эффективность передачи данных независимо от пользователя. При этом оконечные узлы возможно взаимодействуют через несколько узлов или даже через несколько транзитных сетей.

На транспортном уровне реализуется:

1) преобразование длинных сообщений в пакеты при их передаче в сети и обратное преобразование;

2) контроль последовательности прохождения пакетов;

3) регулирование трафика в сети;

4) распознавание дублированных пакетов и их уничтожение.
Способ коммуникации "end-end" облегчается еще одним способом адресации - 
адресом процесса, который соотносится с определенной прикладной программой (прикладным процессом), выполняемой на компьютере. Компьютер обычно выполняет одновременно несколько программ, в связи с чем необходимо знать какой прикладной программе (процессу) предназначено поступившее сообщение. Для этого на транспортном уровне используется специальный адрес, называемый адресом порта.Сетевой уровень доставляет каждый пакет на конкретный адрес компьютера, а транспортный уровень передаёт полностью собранное сообщение конкретному прикладному процессу на этом компьютере.

Транспортный уровень может предоставлять различные типы сервисов, в частности, передачу данных без установления соединения или с предварительным установлением соединения. В последнем случае перед началом передачи данных с использованием специальных управляющих пакетов устанавливается соединение с транспортным уровнем компьютера, которому предназначены передаваемые данные. После того как все данные переданы, подключение заканчивается. При передаче данных без установления соединения транспортный уровень используется для передачи одиночных пакетов, называемых дейтаграммами, не гарантируя их надежную доставку. Передача данных с установлением соединения применяется для надежной доставки данных.

Сеансовый уровень

Сеансовый уровень (session layer) обеспечивает обслуживание двух "связанных" на уровне представления данных объектов сети и управляет ведением диалога между ними путем синхронизации, заключающейся в установке служебных меток внутри длинных сообщений. Эти метки позволяют после обнаружения ошибки повторить передачу данных не с самого начала, а только с того места, где находится ближайшая предыдущая метка по отношению к месту возникновения ошибки.

Сеансовый уровень предоставляет услуги по организации и синхронизации обмена данными между процессами уровня представлений.

На сеансовом уровне реализуется:

1) установление соединения с адресатом и управление сеансом;

2) координация связи прикладных программ на двух рабочих станциях.

Уровень представления

Уровень представления(presentation layer) обеспечивает совокупность служебных операций, которые можно выбрать на прикладном уровне для интерпретации передаваемых и получаемых данных. Эти служебные операции включают в себя:

• управление информационным обменом;

• преобразование (перекодировка) данных во внутренний формат каждой конкретной ЭВМ и обратно;

• шифрование и дешифрование данных с целью защиты от несанкционированного доступа;

• сжатие данных, позволяющее уменьшить объём передаваемых данных, что особенно актуально при передаче мультимедийных данных, таких как аудио и видео.

Служебные операции этого уровня представляют собой основу всей семиуровневой модели и позволяют связывать воедино терминалы и средства вычислительной техники (компьютеры) самых разных типов и производителей.

Прикладной уровень

Прикладной уровень(application layer) обеспечивает непосредственную поддержку прикладных процессов и программ конечного пользователя, а также управление взаимодействием этих программ с различными объектами сети. Другими словами, прикладной уровень обеспечивает интерфейс между прикладным ПО и системой связи. Он предоставляет прикладной программе доступ к различным сетевым службам, включая передачу файлов и электронную почту.
1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта