Физика. Лекция 1 Кинематика. Введение
Скачать 326 Kb.
|
§ 3 -2 Закон изменения импульса системы материальных точек. Для простоты рассмотрим движение системы, состоящей из трех точек, на каждую из которых действуют внутренние силы fik и внешние - Fi , где индекс i представляет номер точки. Уравнения движения для каждой точки имеют вид: ( 3-9 ) Складывая эти уравнения, получим: ( 3-10 ) По третьему закону Ньютона внутренние силы попарно равны по величине и противоположны по направлению ( например, f12 = -f21). Потому сумма всех внутренних сил равна нулю, и , ( 3-11 ) где через Р обозначен суммарный импульс системы. Обобщая ( 3-11 ) для любого числа материальных точек, можно записать следующее выражение: , ( 3-12 ) которое принято называть законом изменения импульса системы материальных точек. Как видно из этого выражения, изменение суммарного импульса определяется равнодействующей всех внешних сил, действующих на систему. Если же эта равнодействующая равна нулю ( или на систему не действуют никакие внешние силы), то суммарный импульс системы остается постоянным. Это следствие уравнения ( 3-12 ) называется законом сохранения импульса. Другим следствием рассмотренного закона изменения импульса служит теорема о движении центра масс, которая утверждает, что центр масс системы материальных точек под действием внешних сил движется как материальная точка суммарной массы, к которой приложены все внешние силы, и записывается в таком виде: МА =. ( 3-13 ) Доказательство этого утверждения следует из сравнения определения ускорения центра масс( 3-8 ) и выражения ( 3-13 ). Примерами закона сохранения импульса могут служить отдача при стрельбе из огнестрельного оружия, реактивное движение, перемещение осьминогов и т.п. Лекция 4. Динамика твердого тела. § 4-1. Кинематические соотношения. Твердое тело можно рассматривать как систему материальных точек, жестко скрепленных друг с другом. Отсутствие такого закрепления существенно затруднило бы описание движения всего конгломерата точек. Для полного описания движения одной точки необходимо знать ее три координаты, поэтому для N точек число необходимых координат , а следовательно, и число уравнений для их определения составило бы 3N. Так как число N может быть как угодно большим, то возможности строгого решения системы из 3N уравнений весьма ограничены. Кроме того характер движения тела как целого может быть различным. Обычно различают поступательное, вращательное и плоское движения. При поступательном движении все точки тела движутся по параллельным траекториям, так что для описания движения тела в целом достаточно знать закон движения одной точки. В частности, такой точкой может служить центр масс твердого тела. В этом случае задача описания движения тела решается с помощью теоремы о движении центра масс. При вращательном движении все точки тела описывают концентрические окружности, центры которых лежат на одной оси. Скорости точек на любой из окружностей связаны с радиусами этих окружностей и угловой скоростью вращения: vi = [w ri ]. Так как твердое тело при вращении сохраняет свою форму, радиусы вращения остаются постоянными и = [ bri] . ( 4-1 ) § 4-2. Определение момента силы. Для описания динамики вращательного движения твердого тела необходимо ввести понятие момента силы. При этом надо различать понятия момента силы
шему пути вращается к направлению второго вектора f, а движение оси буравчика
§ 4-3. Основное уравнение динамики вращательного движения.
где fik ( k = 1,2, ...N) представляют собой внутренние силы взаимодействия всех элементов с выбранным, а Fi - равнодействующая всех внешних сил, действующих на i - элемент. Скорость vi каждого элемента вообще говоря может меняться как угодно, но поскольку тело является твердым, то смещения точек в направлении радиусов вращения можно не рассматривать. Поэтому спроектируем уравнение ( 4-4 ) на направление касательной и умножим обе части уравнения на ri : ri( mi ai )t= ri(ri(fi1)t + ri(fi2)t + ..... +ri(fiN)t + ri(Fi)t . ( 4-4a ) В правой части получившегося уравнения произведения типа ri(fi1)t представляют собой (согласно ( 4-3)) моменты внутренних сил относительно оси вращения, т.к. ri и (f i)t взаимно перпендикулярны. Аналогично произведения ri(Fi)t являются моментами внешних сил, действующих на i-элемент. Просуммируем уравнения дви-
ты сил М1 = ( f12) r1sin(900 - g) = (f12) l12 и M2 = (f21) r2 sin(900 - b) = (f21) l21 равны и противоположно направлены. На основании этого можно сделать вывод, что при сложении всех моментов внутренних сил они попарно уничтожатся. Суммарный момент всех внешних сил обозначим S Мi , где Mi = [ ri Fi]. Левая часть уравнения ( 4-4а ) с учетом (3 -7) представится в таком виде: ==, ( 4-5 ) где величину принято называть моментом инерции твердого тела относительно заданной оси. Эта величина характеризует распределение массы тела относительно определенной оси. Как следует из определения момента инерции - это величина аддитивная. Момент инерции тела складывается из моментов инерции его отдельных элементов, которые можно рассматривать как материальные точки, т.е. I =, где ji = mi - момент инерции материальной точки. При практическом вычислении моментов инерции вместо суммирования используется интегрирование ( суммирование бесконечно малых величин). Если ось, относительно которой вычисляется момент инерции, проходит через центр симметрии тела, то вычисление такого интеграла представляет сравнительно несложную задачу, но в общем случае задачу решить трудно. Для упрощения вычислений полезной оказывается теорема о параллельном переносе осей инерции (теорема Гюйгенса - Штейнера), формулировка которой гласит, что момент инерции относительно любой оси равен сумме момента инерции относительно параллельной оси, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями, т.е. Iпроиз = Iцм + m d 2 . ( 4-6) Для некоторых тел правильной формы значение моментов инерции относительно осей, проходящих через центр их симметрии приведены в таблице 2. Таблица 2.
называют изменением момента импульса (радиус ri внесен под знак дифференцирования, т.к. все точки вращаются по окружностям постоянного радиуса ) . Если обозначить [ ri mi vi] = [ri pi] = Li , a cyмму = L , то уравнение (4-7) можно за- писать так: . ( 4-8 )
L = [ r p ] , ( 4-9 ) где значения r и р соответствуют обозначениям рис.12 ( с заменой f на р ). Для вращательного движения точки L = [r mv] = [r mwr] = w mr 2 = w Ii . Для твердого тела L = wI . ( 4-10 ) § 4-4. Закон сохранения момента импульса. Если правая часть уравнения (4-8) оказывается по каким - либо равной нулю - суммарный момент сил равен нулю, то и L = const. Это случается, если система замкнута, т.е. внешние силы вообще не действуют, или если моменты внешних сил компенсируют друг друга. Наконец, если внешние силы оказываются центральными - линии действия всех сил пересекаются в одной точке. Весьма интересным представляется случай, когда механический момент импульса при вращении тела имеет достаточно большую величину ( по сравнению с моментом внешних сил ). Наиболее ярким примером этого служит гироскоп ( см. рис 16 ).
ся на угол dj так, что изменение момента импульса dL = L1 - L2 = Ldj. В то же время из уравнения ( 4-8 ) следует dL = M dt , или Ldj = M dt , откуда можно придти к выводу, что гироскоп начинает вращаться в плоскости, перпендикулярной плоскости рисунка с частотой, которая называется частотой прецессии. . ( 4-11 ) Если моменты внешних сил малы по сравнению с моментом импульса вращающегося тела, то частота прецессии мала, и тело сохраняет ориентацию оси вращения в пространстве ( пример - жонглирование предметами в цирке). 1 В отличие от юридических законов, предписывающих те или иные правила поведения, физические законы носят описательный характер и отражают реальные соотношения между различными явлениями природы. 2 Материальной точкой можно считать любой объект, если его геометрические размеры малы по сравнению с характеристическими расстояниями конкретной задачи. 3 Трактат И. Ньютона «Математические начала натуральной философии» был опубликован в 1687 г. 4 Вес тела - это сила, с которой тело давит на подставку или растягивает нить подвеса. В быту силу в Ньютонах измерять не принято. 5 Это не имеет ничего общего с так называемыми «предсказаниями» оккультных «наук». 6 Положительное направление оси координат удобно направить вниз. 7 Для упрощения изложения материала силы трения качения не рассматриваются . 8 Плечом силы называют величину r sina (cм. выражение (4-2) и обозначения рис.11.). Оно является перпендикуляром, опущенным на линию действия силы. |