Цитология. Цитология печать. Лекция 1 общие принципы строения клеток. Плазмолемма. Цитоплазма. Органеллы и включения
Скачать 0.51 Mb.
|
Комплекс Гольджи – мембранная органелла, образованная тремя основными элементами. В его состав входят: • скопления уплощенных цистерн; • мелкие (транспортные) пузырьки; • конденсирующие вакуоли. Комплекс этих элементов называется диктиосомой. Некоторые типы клеток могут иметь до нескольких сотен диктиосом. Цистерны имеют вид изогнутых дисков с несколько расширенными периферическими отделами. Цистерны образуют группу в виде стопки из 3-30 элементов. Выпуклая сторона этой группы обращена обычно к ядру, вогнутая – к плазмолемме. От периферических расширений цистерн отщепляются пузырьки и вакуоли. Пузырьки – мелкие, окруженные мембраной сферические элементы с содержимым умеренной электронной плотности. Вакуоли – крупные сферические образования, отделяющиеся от зрелой поверхности комплекса Гольджи в некоторых железистых клетках. Вакуоли содержат секреторный продукт, находящийся в процессе конденсации. Комплекс Гольджи обладает полярностью: в каждой диктиосоме выделяют две поверхности: формирующуюся (незрелую, или цис- поверхность) и зрелую (транс-поверхность). Цис-поверхность выпуклой формы обращена в сторону гранулярной ЭПС и связана с ней системой мелких транспортных пузырьков, отщепляющих от ЭПС. Таким образом, белки в транспортных пузырьках проникают через цис-поверхность. Каждая группа медиальных цистерн внутри стопки отличается особым составом ферментов, и для каждой группы характерны свои реакции обработки белков. Обработанные вещества выходят с вогнутой транс-поверхности. Функции комплекса Гольджи: • синтез полисахаридов и гликопротеинов (гликокаликса, слизи); • модификация белковых молекул: терминальное гликозилирование – включение углеводных компонентов; фосфорилирование – добавление фосфатных групп; ацилирование – добавление жирных кислот; сульфатирование – добавление сульфатных остатков и т.д.; • конденсация секреторного продукта (в конденсирующих вакуолях) и образование секреторных гранул; • сортировка белков на транс-поверхности; • упаковка секреторных продуктов в мембранные структуры. Секреторные продукты, обработанные в комплексе Гольджи и окруженные мембраной, накапливаются в клетке в виде: • секреторных гранул, которые выделяются путем экзоцитоза; • первичных лизосом; • окаймленных пузырьков, в которых интегральные белки транспортируются в плазмолемму. Митохондрии Митохондрии – мембранные органеллы, присутствующих во всех эукариотических клетках, и представляющие собой энергетический аппарат клетки. Функции митохондрий: • основная функция – обеспечение клетки легко доступной энергией, которая образуется благодаря окислению метаболитов, и запасается частично в виде высокоэнергетических фосфатных связей АТФ; • участие в биосинтезе стероидов; • участие в окислении жирных кислот. Митохондрии могут иметь эллиптическую, палочковидную или нитевидную форму. Их размеры составляют 0.2-2 мкм в ширину и до 10 мкм в длину. Число митохондрий в разных клетках и их распределение в пределах клетки варьирует. Много митохондрий встречается в клетках с активным метаболизмом, требующим высоких энергетических затрат: кардиомиоцитах, клетках почечных канальцев, париетальных клетках желез дна желудка. Строение митохондрий. Под электронным микроскопом митохондрии имеют характерную структуру. Каждая митохондрия состоит из наружной и внутренней мембран, между которыми находится межмембранное пространство. Пространство, ограниченное внутренней мембраной, заполнено митохондриальным матриксом, - мелкозернистым материалом различной электронной плотности. Наружная мембрана митохондрий содержит много молекул специализированных транспортных белков (таких как, порин), что обеспечивает её высокую проницаемость, а также белки-рецепторы, распознающие белки, которые переносятся через обе мембраны митохондрий в особых точках их контакта – зонах слипания. Внутренняя мембрана митохондрий образует складки – кристы, благодаря чему значительно увеличивается внутренняя поверхность митохондрий. В состав внутренней мембраны входят транспортные белки; ферменты дыхательной цепи и сукцинатдегидрогеназа; комплекс АТФ- синтетазы. На кристах имеются элементарные частицы (оксисомы, или F 1 - частицы), состоящие из округлой головки (9 нм) и цилиндрической ножки. Именно на них происходит сопряжение процессов окисления и фосфорилирования (АДФ → АТФ). Чаще всего кристы располагаются перпендикулярно длинной оси митохондрий и имеют пластинчатую (ламеллярную) форму. Для клеток, синтезирующих стероидные гормоны, кристы имеют вид трубочек или пузырьков - тубулярно-везикулярные кристы. В этих клетках ферменты стероидного синтеза частично локализуются на внутренней мембране митохондрий. Число и площадь крист отражает функциональную активность клеток: наибольшая площадь крист характерна, например, для митохондрий клеток сердечной мышцы, где потребность в энергии постоянно очень велика. Митохондриальный матрикс – мелкозернистое вещество, заполняющее полость митохондрии. Матрикс содержит несколько сотен ферментов: ферменты цикла Кребса, окисления жирных кислот, белкового синтеза. Здесь иногда встречаются митохондриальные гранулы - частицы высокой электронной плотности, содержащие ионы Са 2+ и Мg 2+ , а также локализуются митохондриальные ДНК, иРНК, тРНК, рРНК и митохондриальные рибосомы. Митохондриальная ДНК имеет кольцевую форму и включает 37 генов. Генетическая информация митохондриальной ДНК обеспечивает синтез около 5-6% белков митохондрий (ферменты электрон-транспортной системы). Синтез других митохондриальных белков контролируется ДНК ядра. Наследование митохондриальной ДНК происходит только по материнской линии. Повреждения митохондриальной ДНК в результате мутаций могут привести к развитию ряда патологий - митохондриальных цитопатий. Лизосомы Лизосомы – мембранные органеллы, которые обеспечивают внутриклеточное переваривание (расщепление) макромолекул внеклеточного и внутриклеточного происхождения, и обновление компонентов клетки. Морфологически лизосомы представляют собой округлые пузырьки, ограниченные мембраной и содержащие большое количество различных гидролаз (более 60 ферментов). Наиболее характерными ферментами лизосом являются: кислая фосфатаза (маркёр лизосом), протеазы, нуклеазы, сульфатазы, липазы, гликозидазы. Все литические ферменты лизосом представляют собой кислые гидролазы, т.е. оптимум их активности проявляется при рН≈5. Литические ферменты синтезируются и накапливаются в грЭПС, далее переносятся в комплекс Гольджи, где модифицируются и упаковываются в мембраны. Мембрана лизосом обладает протонным насосом, вызывающим закисление среды внутри органелл, обеспечивает диффузию низкомолекулярных продуктов переваривания макромолекул в гиалоплазму и препятствует утечке литических ферментов в гиалоплазму. Повреждение мембраны приводит к разрушению клетки вследствие самопереваривания. Лизосомы присутствуют во всех клетках. Особенно много лизосом в тех клетках, где активно протекают процессы фагоцитоза с последующим перевариванием захваченного материала (например, в нейтрофильных гранулоцитах, макрофагах, остеокластах). Лизосомы подразделяются на первичные (неактивные) и вторичные (активные). Первичные лизосомы (гидролазные пузырьки) – округлые пузырьки небольшого размера (около 50 нм диаметром), с мелкозернистым, гомогенным, плотным матриксом. Надежная идентификация первичных лизосом возможна только при гистохимическом выявлении характерных ферментов (кислая фосфатаза). Первичные лизосомы – неактивные структуры, еще не вступившие в процессы расщепления субстратов. Вторичные лизосомы – органеллы, активно участвующие в процессах внутриклеточного переваривания. Диаметр вторичных лизосом обычно составляет 0.5-2 мкм, их форма и структура могут существенно варьировать в зависимости от перевариваемого субстрата, но обычно содержимое вторичных лизосом гетерогенно. Вторичная лизосома – результат слияния первичной лизосомы с фагосомой (фаголизосома) или аутофагосомой (аутофаголизосома). Фаголизосома формируется путем слияния первичной лизосомы с фагосомой - мембранным пузырьком, содержащим материал, захваченный клеткой извне. Процесс разрушения этого материала называется гетерофагией. Гетерофагия играет важную роль в функции всех клеток. Особое значение гетерофагия имеет для клеток, осуществляющих защитную функцию, таких как макрофаги и нейтрофильные лейкоциты, которые захватывают и переваривают болезнетворные микроорганизмы. Дефицит лизосомальных ферментов может приводить к развитию ряда заболеваний (болезни накопления), вызванных накоплением в клетках непереваренных веществ, которые нарушают функцию клеток. Примерами могут служить: болезнь Хюрлера, при которой из-за отсутствия α-L- идуронидазы фибробласты и остеобласты накапливают дерматан сульфат, а у больных отмечаются множественные дефекты хондро- и остеогенеза и умственное отставание, болезнь Тэя-Сакса (из-за недостаточности гексозаминидазы А происходит накопление гликолипидов в нервных клетках и поражается нервная система), болезнь Гоше (вследствие наследственного дефекта глюкоцереброзидазы гликолипиды накапливаются в макрофагах и поражаются печень и селезенка) и другие. Аутофаголизосома образуется при слиянии первичной лизосомы с аутофагосомой - мембранным пузырьком, содержащим собственные компоненты клетки, которые подлежат разрушению. Процесс переваривания внутриклеточного материала называется аутофагией. Аутофагия обеспечивает постоянное обновление клеточных структур благодаря перевариванию митохондрий, полисом, фрагментов мембран. Остаточные тельца (третичные лизосомы) – лизосомы, содержащие непереваренный материал, которые могут находиться в цитоплазме длительное время. В некоторых долгоживущих клетках (нейроны, кардиомиоциты, гепатоциты) в остаточных тельцах накапливается коричневый эндогенный пигмент липофусцин – «пигмент старения». В некоторых случаях лизосомы выделяют свое содержимое за пределы клетки, например, остеокласты, которые разрушают костную ткань. Пероксисомы Пероксисомы– сферические мембранные органеллы диаметром 0.05 – 1.5 мкм, с умеренно плотным гомогенным или мелкозернистым матриксом. Мелкие пероксисомы встречаются во всех клетках, а крупные пероксисомы – в гепатоцитах, макрофагах, в клетках канальцев почки. Матрикс пероксисом содержит до 15 различных ферментов, важнейшие из которых: каталаза (маркёр пероксисом), пероксидаза, оксидазы аминокислот, уратоксидаза. У некоторых видов животных в пероксисомах выявляется более плотная кристаллическая сердцевина – нуклеоид, состоящая из уратоксидазы. В пероксисомах клеток человека нуклеотида нет, поскольку отсутствует способность метаболизировать ураты. Функции пероксисом: • окисление аминокислот и других субстратов; • защита клетки от действия перекиси водорода (Н 2 О 2 ), сильного окислителя, образующегося в результате окисления органических соединений, и оказывающего повреждающий эффект на клетку. При этом каталаза пероксисом разлагает перекись водорода на воду и кислород. • участие в расщеплении жирных кислот; • участие в обезвреживании ряда веществ (спирт и др.). Нарушения активности пероксисом вызывает ряд наследственных заболеваний – пероксисомных болезней с тяжелыми нарушениями нервной системы. Цитоскелет Цитоскелет – сложная трехмерная сеть немембранных органелл: • микротрубочек; • микрофиламентов; • промежуточных филаментов. Микротрубочки – полые цилиндрические образования различной длины, с диаметром 24-25 нм, с толщиной стенки 5 нм. Это самые крупные компоненты цитоскелета. Стенка микротрубочки состоит из спирально расположенных нитей – протофиламентов, образованных димерами из глобулярных белковых молекул – α- и β-тубулина. Микротрубочки могут располагаться в цитоплазме в виде отдельных элементов, в виде пучков, где они связаны тонкими поперечными мостиками, или могут частично сливаться друг с другом, образуя дуплеты (в аксонеме ресничек и жгутиков) и триплеты (в базальном тельце и центриолях). Микротрубочки представляют собой лабильную систему, в которой сохраняется равновесие между их постоянной сборкой и диссоциацией. Центрами организации микротрубочек (ЦОМТ) являются сателлиты – глобулярные белковые структуры, содержащиеся в базальных тельцах ресничек и клеточном центре, а также центромеры хромосом. Угнетение самосборки микротрубочек при действии на клетку блокаторов (колхицин и др.) вызывает гибель быстроделящихся клеток вследствие отсутствия митотического веретена деления, нарушения транспортных процессов в клетке (аксонный транспорт в нейронах, секреция), изменения форм клетки, дезорганизацию органелл в клетке. Функции микротрубочек: • поддержание стабильной формы клеток, и порядка распределения её компонентов; • обеспечение внутриклеточного транспорта, в том числе органелл, пузырьков, секреторных гранул (благодаря некоторым (моторным) белкам, ассоциированным с микротрубочками – динеины, кинезины); • образование основы центриолей и ахроматинового веретена деления и обеспечение движения хромосом в процессе митоза; • образование основы ресничек и жгутиков, а также обеспечение их движения. Клеточный центр образован двумя полыми цилиндрическими структурами - центриолями, которые расположены под прямым углом друг к другу, и отходящими от них микротрубочек (центросфера, или полярная лучистость). Каждая центриоль представляет собой короткий цилиндр, состоящий из 9 триплетов частично слившихся трубочек, связанных поперечными белковыми мостиками. Формула строения центриоли описывается как (9 × 3) + 0, то есть девять триплетов микротрубочек на периферии, 0 - так как в центральной части микротрубочки отсутствуют. Каждый триплет центриоли связан с глобулярными белковыми тельцами – сателлитами, от которых отходят микротрубочки, образующие центросферу. В неделящейся клетке выявляется одна пара центриолей – диплосома, которая располагается обычно вблизи ядра. Перед делением клетки в S- периоде интерфазы происходит дупликация (удвоение) центриолей: под прямым углом к каждой зрелой (материнской) центриоли пары образуется новая (дочерняя) центриоль. В ранней профазе митоза пары центриолей расходятся к полюсам клетки и служат центрами образования микротрубочек ахроматинового веретена деления. Реснички и жгутики являются выростами цитоплазмы, обладающие подвижностью. Основу ресничек и жгутиков составляет каркас из микротрубочек, называемый аксонемой. Длина ресничек равна 2-10 мкм, а их количество на поверхности одной клетки может составлять до нескольких сотен. В организме человека жгутик есть только в одном типе клеток – сперматозоидах. При этом один сперматозоид имеет один жгутик длиной 50- 70 мкм. Аксонема образована 9 периферическими парами микротрубочек (микротрубочки А и В) и одной центрально расположенной парой; такое строение описывается формулой (9 × 2) + 2. Центральная пара микротрубочек окружена оболочкой, от которой к периферическим дуплетам расходятся радиальные спицы. От микротрубочки А к микротрубочке В соседнего дублета отходят “ручки” из белка динеина, который обладает АТФ-азной активностью, что необходимо для скольжения соседних дублетов в аксонеме, вызывающих движение (биение) ресничек и жгутиков. Мутации, вызывающих изменения белков ресничек и жгутиков, ведут к различным нарушениям функций клеток. Так, при отсутствии динеиновых ручек (синдром неподвижных ресничек, или синдром Картагенера),больные страдают хроническими заболеваниями дыхательной системы и бесплодием (вследствие неподвижности спермиев и нарушений продвижения яйцеклеток по яйцеводу). В основании каждой реснички или жгутика лежит базальное тельце, сходное по строению с центриолью. На уровне апикального конца базального тельца микротрубочка С триплета заканчивается, тогда как микротрубочки А и В продолжаются в соответствующие микротрубочки аксонемы реснички. При развитии ресничек или жгутика базальное тельце играет роль матрицы, на которой происходит сборка компонентов аксонемы. Микрофиламенты – тонкие белковые нити диаметром 5-7 нм, расположенные в цитоплазме поодиночке, в виде сетей или упорядоченными пучками (в скелетной и сердечной мышцах). Основной белок микрофиламентов – актин– встречается в клетках как в мономерной форме (глобулярный актин), так и в виде полимерного фибриллярного актина. Функции микрофиламентов: • в мышечных волокнах и клетках актиновые микрофиламенты образуют упорядоченные пучки и при взаимодействии с миозиновыми филаментами обеспечивают их сокращение. • в немышечных клетках микрофиламенты образуют кортикальную (терминальную) сеть, в которой микрофиламенты сшиты с помощью особых белков. Кортикальная сеть, с одной стороны, обеспечивает поддержание формы клетки, а с другой - способствует изменениям формы плазмолеммы, обеспечивая, таким образом, функции эндо- и экзоцитоза, миграции клеток, образования псевдоподий. • микрофиламенты тесно связаны с органеллами, транспортными пузырьками, секреторными гранулами и играют важную роль в их перемещении внутри цитоплазмы. • микрофиламенты формируют сократимую перетяжку (срединное тельце) при цитотомии, завершающей клеточное деление. • микрофиламенты участвуют в организации структуры межклеточных соединений (zonula adherens – поясок сцепления). • микрофиламенты являются основой специальных выростов цитоплазмы – микроворсинок и стереоцилий. |