Главная страница

Лекция 1 Введение в системное программное обеспечение


Скачать 0.9 Mb.
НазваниеЛекция 1 Введение в системное программное обеспечение
Дата14.05.2022
Размер0.9 Mb.
Формат файлаdoc
Имя файлаf66a995.doc
ТипЛекция
#528406
страница6 из 10
1   2   3   4   5   6   7   8   9   10

Лекция 4: Среда разработки программного обеспечения

Компилятор


Компиля́тортранслятор, который осуществляет перевод всей исходной программы в эквивалентную ей результирующую программу на языке машинных команд (микропроцессора или виртуальной машины).

Основы


Большая часть компиляторов переводят программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен центральным процессором. Как правило, этот код также должен выполняться в среде конкретной операционной системы, поскольку использует предоставляемые ей возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Некоторые компиляторы (например, Java) переводят программу не в машинный код, а в программу на некотором специально созданном низкоуровневом языке. Такой язык — байт-код — также можно считать языком машинных команд, поскольку он подлежит интерпретации виртуальной машиной. Например, для языка Java это JVM (язык виртуальной машины Java), или так называемый байт-код Java (вслед за ним все промежуточные низкоуровневые языки стали называть байт-кодами). Для языков программирования на платформе .NET Framework (C#, Managed C++, Visual Basic .NET и другие) это MSIL (Microsoft Intermediate Language, «Промежуточный язык фирмы Майкрософт»).

Программа на байт-коде подлежит интерпретации виртуальной машиной, либо ещё одной компиляции уже в машинный код непосредственно перед исполнением. Последнее называеется «Just-In-Time компиляция» (JIT), по названию подобного компилятора для Java. MSIL-код компилируется в код целевой машины также JIT-компилятором, а библиотеки .NET Framework компилируются заранее).

Для каждой целевой машины (IBM, Apple и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС получать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут быть оптимизированы под разные типы процессоров из одного семейства (путём использования специфичных для этих процессоров инструкций). Например, код, скомпилированный под процессоры семейства i686, может использовать специфичные для этих процессоров наборы инструкций — MMX, SSE, SSE2.

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а программы — декомпиляторами. Но, поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++ в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Flash.

Структура компилятора


Процесс компиляции состоит из следующих этапов:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.

  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.

  3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — напр. привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.

  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах, напр. над промежуточным кодом или над конечным машинным кодом.

  5. Генерация кода. Из промежуточного представления выдается код на целевом языке.

В конкретных реализациях компиляторов, эти этапы могут быть раздельны или совмещены в том или ином виде.

Трансляция и компоновка


Важной исторической особенностью компилятора, отраженной в его названии (англ. compile — собирать вместе, составлять), являлось то, что он мог производить и компоновку (то есть содержал две части — транслятор и компоновщик). Это связано с тем, что раздельная компиляция и компоновка как отдельная стадия сборки выделились значительно позже появления компиляторов, и многие популярные компиляторы (например, GCC) до сих пор физически объединены со своими компоновщиками. В связи с этим, вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчеркивания способности собирать из многих файлов один).

Примеры компиляторов


  • GCC

  • Free Pascal Compiler

  • Компиляторы C, C++ и Fortran от Sun Microsystems Inc.

  • Watcom Fortran/C++ Compiler

  • Intel C++/Fortran compiler.

  • Преобразователь Глагола

  • ICC AVR



1   2   3   4   5   6   7   8   9   10


написать администратору сайта