|
Лекции разработка. Лекция общие принципы проектирования разработки
Лекция 6.
РАЗРАБОТКА ТРЕЩИНОВАТО-ПОРИСТЫХ ПЛАСТОВ ПРИ ВЫТЕСНЕНИИ НЕФТИ ВОДОЙ По результатам исследований и опыта разработки нефтяных месторождений можно сделать вывод, что подавляющее большинство пластов, сложенных не только карбонатными, но и терригенными породами, такими, как песчаники и алевролиты, в той или иной степени трещиноватые.
В одних случаях, особенно когда сами породы малопористы и плохо проницаемы, трещины - это главные каналы, по которым движется нефть к забоям добывающих скважин при разработке таких пород, на что указывает несоответствие проницаемости кернов и проницаемости, определенной в результате гидродинамических исследований скважин. Фактическая проницаемость часто оказывается намного выше определенной по зернам.
В процессе разработки трещиновато-пористых пластов при другом режиме изменение давления быстрее распространяется по системе трещин, в результате чего возникают перетоки жидкости между трещинами и блоками пород, т. е. матрицей, приводящие к характерному для таких пород запаздыванию перераспределения давления по сравнению с соответствующим перераспределением давления в однородных пластах при упругом режиме.
На разработку трещиноватых и трещиновато-пористых пластов может оказывать существенное влияние резкое изменение объема трещин при изменении давления жидкости, насыщающей трещины в результате деформации горных пород.
Один из наиболее сложных вопросов разработки трещиновато-пористых пластов связан с применением процессов воздействия на них путем закачки различных веществ, и в первую очередь с использованием обычного заводнения.
Возникает опасение, что закачиваемая в такие пласты вода быстро прорвется по системе трещин к добывающим скважинам, оставив нефть в блоках породы. При этом, по данным экспериментальных исследований и опыта разработки, известно, что из самой системы трещин нефть вытесняется довольно эффективно и коэффициент вытеснения достигает 0,8-0,85. Опыт также показывает, что и из матриц трещиновато-пористых пластов при их заводнении нефть вытесняется, хотя коэффициент нефтевытеснения сравнительно невелик, составляя 0,20-0,30. Поясним, под действием каких же сил происходит вытеснение нефти водой из матриц трещиновато-пористых пластов.
Одна из сил вполне очевидна, хотя до последнего времени и слабо учитывалась в расчетах процессов разработки. Эта сила обусловлена градиентами давления в системе трещин, воздействующими и на блоки породы.
Другая из сил связана с разностью капиллярного давления в воде и нефти, насыщающей блоки. Действие этой силы приводит к возникновению капиллярной пропитки пород, т. е. к замещению нефти водой в них под действием указанной разности капиллярного давления. Капиллярная пропитка оказывается возможной, если породы гидрофильные. Капиллярная пропитка матрицы или блоков трещиновато-пористых пластов вполне объяснима не только с позиции действия капиллярных сил, но и с энергетической точки зрения, так как минимум поверхностной энергии на границе нефти с водой будет достигнут, когда нефть соберется воедино в трещинах, а не будет насыщать поры матрицы, обладая сложной, сильно разветвленной поверхностью.
Исследования показывают, что если взять блок породы трещиновато-пористого пласта с длиной грани l*, первоначально насыщенный нефтью, и поместить его в воду (аналогичная ситуация возникает, когда блок в реальном пласте окружен трещинами и в трещинах находится вода), то скорость φ(t) капиллярного впитывания воды в блок и, следовательно, вытеснения из него нефти, согласно гидродинамической теории вытеснения нефти водой с учетом капиллярных сил, будет зависеть от времени t следующим образом:
φ(t)1/
Из энергетических соображений можно считать, что скорость капиллярного впитывания пропорциональна скорости сокращения поверхности раздела между нефтью и водой, которая, в свою очередь, пропорциональна площади поверхности раздела. В этом случае можно считать, что,
φ(t)e-βt,
где β - некоторый коэффициент.
Если изучать реальные процессы извлечения нефти из трещиновато-пористых пластов под действием капиллярной пропитки, то, по-видимому, наиболее правильным будет сочетание гидродинамического и энергетического подходов. В этом случае для скорости капиллярной пропитки можно использовать формулу, предложенную Э. В. Скворцовым и Э. А. Авакян:
(1)
где а - экспериментальный коэффициент.
Из соображений размерности и физики процесса впитывания коэффициент β можно выразить следующим образом:
, (2)
где kн, kв - относительные проницаемости для нефти и воды; k - абсолютная проницаемость; σ- поверхностное натяжение за границе нефть - вода; θ - угол смачивания пород пласта водой; μн - вязкость нефти; А - экспериментальная функция.
Найдем выражение для коэффициента а исходя из того условия, что за бесконечное время количество впитавшейся в кубический блок с длиной грани l* воды равно объему извлеченной из него нефти. Имеем в соответствии со сказанным
(3)
где sн0 - начальная нефтенасыщенность блока породы; η* - конечная нефтеотдача блока при его капиллярной пропитке. Если скорость капиллярной пропитки можно определить по формуле (1), то
(4)
Из (3) и (4) получим
(5) Перейдем к процессу вытеснения нефти водой из трещиновато-пористого пласта, состоящего из множества блоков породы. Будем полагать, как и выше, что эти блоки можно представить кубами с длиной грани l* (рис.1). Рис. 1. Схема заводняемого трещиновато-пористого прямолинейного пласта:
1 - блоки породы, охваченные капиллярной пропиткой;
2- блоки породы, не охваченные капиллярной пропиткой Поскольку вытеснение нефти водой начинается с границы пласта х = 0, то первые блоки, находящиеся у входа в пласт, будут пропитаны водой больше, чем более удаленные. Весь расход воды q, заканчиваемой в прямолинейный пласт, уходит в определенное число блоков породы, так что в каждый момент времени пропитка их происходит в области 0 ≤ x ≤ xф (xф - фронт капиллярной пропитки). Этот фронт будет перемещаться в пласте со скоростью
υф = dxф/d (6)
Если считать, что блоки породы в каждом сечении пласта начинают пропитываться в момент времени λ, то скорость впитывания воды необходимо исчислять от этого момента времени. Пусть в течение времени ∆λ, "вступило" в пропитку некоторое число блоков породы. Расход воды ∆q, входящей в эти блоки, составит
(7)
Скорость впитывания воды φ(t) определена для одного блока. Чтобы выразить ее как скорость впитывания воды в единицу объема трещиновато-пористого пласта, необходимо разделить φ(t) на l*, что и сделано в формуле (7). Следует еще раз отметить, что скорость пропитки в формуле (7) исчисляется с момента λ, в который к блоку с координатой xф(λ) подошел фронт впитывающейся в блоки воды.
Суммируя приращения расходов ∆q в формуле (7) и устремляя ∆λ, к нулю, приходим к следующему выражению:
(8)
Обычно бывает задан расход q и необходимо найти скорость продвижения фронта пропитки υф(λ). Тогда (8) представляет собой интегральное уравнение для определения υф(t).
Если учитывать, что скорость пропитки определяют по формуле (1), то с учетом (8), получим
(9)
Решение интегрального уравнения (9) получаем с использованием преобразования Лапласа, которое имеет вид:
(10)
Из (10) получим выражение для определения положения фронта пропитки
(11)
Формула (11) позволяет определить время безводной разработки пласта t = t*, при котором xф(t*) = l.
Для того чтобы рассчитать показатели разработки трещиновато-пористого пласта в период добычи обводненной продукции, можно поступить следующим образом. Будем считать, что этот пласт "фиктивно" простирается и при х >l, вплоть до бесконечности (см. рис. 1). Расход воды qф, затрачиваемый на пропитку фиктивной части пласта (при х >l), составит
(12)
где υф (λ) определим по выражению (10), если в нем заменим t на λ. Таким образом, получим
(13)
Следовательно, расход воды, впитывающейся в трещиновато-пористый пласт в период t> t* , или дебит нефти, получаемый в этот период:
qн = q - qф. (14)
Дебит воды соответственно будет qв = qф. Из приведенных выражений можно определить по общим формулам текущую обводненность продукции и нефтеотдачу.
Выражение (1) можно использовать для приближенных расчетов вытеснения нефти из трещиновато-пористого пласта в случае пропитки блоков, обусловленной не только капиллярными силами, но и градиентами давления в системе трещин. Так, согласно формулам (1) и (2), вытеснение нефти из блоков породы происходит под действием силы, определяемой с помощью произведения [σcosθ], причем размерность [σcosθ] = Па·м. При гидродинамическом вытеснении нефти из блоков породы вода поступает в эти блоки, а нефть из них вытесняется под действием градиента давления. Размерность gradр равна Па/м. Капиллярные и гидродинамические силы будут иметь одинаковую размерность, если взять вместо σ cos θ величину σ cos θ/l*. Тогда
(15)
В формуле (15), таким образом, учитывается пропитка-блоков пород как за счет капиллярных сил, так и за счет градиентов давления в системе трещин.
ОПЫТ И ПРОБЛЕМЫ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ
С ПРИМЕНЕНИЕМ ЗАВОДНЕНИЯ
Промышленное применение заводнения нефтяных пластов в СССР было начато в 1948 г. при разработке девонских горизонтов Туймазинского нефтяного месторождения. К этому времени уже были известны опыты закачки воды в нефтяные пласты с целью пополнения пластовой энергии, проводившиеся в различных странах.
При разработке нефтяных месторождений в СССР с применением заводнения вначале использовали законтурное заводнение. При этом нагнетательные скважины бурили за внешним контуром нефтеносности, вдоль него. Добывающие скважины располагали также вдоль контура нефтеносности. Линии расположения нагнетательных скважин были удалены от первых рядов добывающих скважин на 1-6 км.
Законтурное заводнение применяли на месторождениях, продуктивные пласты которых были сложены в основном песчаниками и алевролитами с проницаемостью 0,3-1,0 мкм2. Вязкость нефти в пластовых условиях заводняемых месторождений составляла 1-5·10-3Па·с.
Законтурное заводнение осуществлялось часто не с самого начала разработки месторождений, а спустя некоторое время, в течение которого происходило падение пластового давления. Тем не менее закачка воды в законтурную область пласта позволяла в течение одного-двух лет настолько восполнить запас пластовой энергии, что оно стабилизировалось.
Использование заводнения нефтяных пластов привело вначале к возникновению технологической трудности, связанной с низкой приемистостью нагнетательных скважин. Пласты, которые, согласно формуле Дюпюи, должны были при используемых перепадах давления поглощать запроектированные расходы воды, практически не принимали воду. Широкое применение методов воздействия на призабойную зону скважин, таких, как гидравлический разрыв пласта и кислотные обработки, и главным образом использование повышенных давлений нагнетания привели к существенному увеличению приемистости нагнетательных скважин и, по сути дела, к решению проблемы их освоения.
Опыт разработки нефтяных месторождений с применением законтурного заводнения привел к следующим основным выводам.
Законтурное заводнение позволяет не только поддерживать пластовое давление на первоначальном уровне, но и превышать его.
Использование законтурного заводнения дает возможность обеспечивать доведение максимального темпа разработки месторождений до 5-7% от начальных извлекаемых запасов, применять системы разработки с параметром плотности сетки скважин 20-60·104 м2/скв при довольно высокой конечной нефтеотдаче, достигающей 0,50-0,55 в сравнительно однородных пластах, и при вязкости нефти в пластовых условиях порядка 1-5·10-3 Па·с.
При разработке крупных по площади месторождений с числом рядов добывающих скважин больше пяти законтурное заводнение оказывает слабое воздействие на центральные части, в результате чего добыча нефти из этих частей оказывается низкой. Это ведет к тому, что темп разработки крупных месторождений в целом не может быть достаточно высоким при законтурном заводнении.
Законтурное заводнение не позволяет воздействовать на отдельные локальные участки пласта с целью ускорения извлечения из них нефти, выравнивания пластового давления в различных пластах и пропластках и т. д.
При законтурном заводнении довольно значительная часть воды, закачиваемой в пласт, уходит в водоносную область, находящуюся за контуром нефтеносности, не вытесняя нефть из пласта.
Указанные результаты законтурного заводнения нефтяных пластов вызвали дальнейшее усовершенствование разработки нефтяных месторождений и привели к целесообразности использования внутриконтурного заводнения, особенно крупных месторождений, с разрезанием пластов рядами нагнетательных скважин на отдельные площади или блоки.
Дальнейшие исследования и опыт разработки показали, что наиболее целесообразно разрезание разрабатываемых пластов рядами нагнетательных скважин на отдельные блоки таким образом, чтобы между рядами нагнетательных скважин в блоке (полосе) находилось не более пяти рядов добывающих скважин.
Так возникла современная разновидность рядных систем - блоковые системы разработки нефтяных месторождений: однорядная, трехрядная и пятирядная. Эти системы впервые стали применять на месторождениях Куйбышевской области.
Использование систем разработки с внутриконтурным разрезанием позволило в 2-2,5 раза увеличить темпы разработки по сравнению с законтурным заводнением, существенно улучшить технико-экономические показатели разработки. Блоковые рядные системы нашли большое применение при разработке нефтяных месторождений во многих нефтедобывающих районах, и особенно в Западной Сибири.
В дальнейшем, в основном с целью расположения резервных скважин, интенсификации и регулирования разработки месторождений, стали применять схемы очагового и избирательного заводнения, при использовании которых нагнетательные и добывающие скважины располагают не в соответствии с принятой упорядоченной системой разработки, а на отдельных участках пластов.
Очаговое и избирательное заводнение стали впервые применять на нефтяных месторождениях Татарии. Заводнение нефтяных пластов с его разновидностями в настоящее время - главный метод воздействия на нефтяные пласты с целью извлечения из них нефти. Это главенствующее положение метод заводнения сохранит, видимо, не только в XX, но и в начале XXI в.
Обширные фактические данные по разработке нефтяных месторождений с применением заводнения во многих случаях подтверждают с той или иной степенью точности теоретические результаты, получаемые на основе моделей поршневого и не-поршневого вытеснения нефти водой из однородного, слоисто-неоднородного, а также трещиноватого и трещиновато-пористого пластов, если модель соответствует реальному пласту. Фактическое изменение пластового давления, добыча нефти и жидкости, зависимость текущей обводненности от нефтеотдачи согласуются с расчетными. Однако проблема правильного выбора модели, наиболее точно отражающей главные особенности разработки пласта, еще далека от своего полного разрешения. Модели разработки пластов, наиболее соответствующие действительности, могут быть построены лишь на основе тщательного изучения и учета свойств пласта и сопоставления результатов расчета процесса разработки пласта с фактическими данными. В последние годы в связи с ростом вычислительных возможностей ЭВМ получают большее развитие детерминированные модели пластов и процессов разработки. Их использование приводит к необходимости решения двумерных и трехмерных задач многофазной многокомпонентной фильтрации.
Богатый и весьма многообразный опыт применения заводнения в СССР позволил не только вполне определенно выявить его технологические возможности, но и сформулировать проблемы, связанные с этим методом воздействия на пласты.
Первая проблема заводнения возникла еще на стадии его лабораторных экспериментальных исследований. Затем теоретические исследования и анализ разработки нефтяных месторождений с различной вязкостью пластовой нефти показали, что с увеличением отношения вязкостей нефти и воды в пластовых условиях μo = μн/μвтекущая нефтеотдача при одном и том же отношении объема закачанной в пласт воды Q к объему пор пласта Vпснижается. Если, например, за условную конечную нефтеотдачу принять нефтеотдачу при прокачке через пласт трех объемов пор пласта, т. е. объема воды, равного 3Vп, то в среднем при μo= l-5 можно получить конечный коэффициент вытеснения порядка 0,6-0,7 для пород-коллекторов нефти с проницаемостью 0,3-1,0 мкм2.
Если же заводнение применяют на нефтяном месторождении с вязкостью нефти в пластовых условиях порядка 20 - 50·10-3 Па·с, то конечный коэффициент вытеснения снижается до 0,35-0,4 в результате усиления неустойчивости процесса вытеснения нефти водой.
Лабораторные экспериментальные исследования вытеснения нефти водой, проводимые на моделях пластов, показывают, что при μ0= 1-5 линия контакта нефть - вода изгибается сравнительно мало (рис. 1), но при μ0 = 20-30 она сильно деформируется (рис. 2). При этом вода, вытесняющая нефть, движется языками, оставляя позади контакта нефть - вода участки обойденной водой нефти.
Рис.1.. Схема движения водонефтя ного контакта
в пласте при μ0 =1-5·10-3 Па·с
1 - область, занятая водой и остаточной нефтью; 2 - водонефтяной контакт; 3 - область, занятая нефтью
Рис. 2. Схема движения водонефтяного контакта в пласте
при μ0 = 20-30·10-3 Па·с
1-3 - см. рис. 93; 4 - скопление нефти, оставшееся позади
водонефтяного контакта
Если μ0>100, заводнение нефтяных месторождений, осуществляемое путем закачки в пласты обычной воды, оказывается неэффективным, поскольку конечная нефтеотдача получается низкой (порядка 0,1).
Та же самая картина возникает при использовании заводнения для вытеснения высокопарафинистой нефти из пластов. Если допустить сильное разгазирование нефти во время разработки месторождения на естественном режиме или снижение пластовой температуры ниже температуры кристаллизации парафина вследствие закачки в пласт воды с более низкой температурой, чем пластовая, то парафин, первоначально находившийся в нефти в растворенном состоянии, выделится из нее, вязкость нефти повысится и она приобретет неньютоновские свойства, что в конечном счете приведет к снижению нефтеотдачи.
Исходя из сказанного, первая проблема разработки нефтяных месторождений с применением заводнения состоит в ликвидации отрицательного влияния высокого отношения вязкостей нефти и воды, а также неньютоновских свойств нефти на текущую и конечную нефтеотдачу.
Исследования и опыт разработки привели к созданию следующих направлений решения этой проблемы:
применению для закачки в пласт горячей воды и водяного пара;
загущению воды полимерными добавками и другими веществами;
использованию влажного и сверхвлажного внутрипластового горения.
Следует отметить, что вода, замещающая в пласте извлекаемую из него нефть, действительно наиболее доступное и целесообразное с экономической точки зрения вещество. Поэтому новые, более эффективные методы разработки нефтяных месторождений будут, по всей видимости, и впредь базироваться на закачке в пласт воды, хотя сам механизм извлечения нефти из недр будет коренным образом отличаться от соответствующего механизма обычного заводнения.
|
|
|