ЛЕК 2 СИСТЕМНЫЙ АНАЛИЗ. Лекция. Основные понятия системного анализа
Скачать 74.18 Kb.
|
Лекция . Основные понятия системного анализа
Предметная область - раздел науки, изучающий предметные аспекты системных процессов и системные аспекты предметных процессов и явлений. Это определение можно считать системным определением предметной области. Системный анализ - совокупность понятий, методов, процедур и технологий для изучения, описания, реализации явлений и процессов различной природы и характера, междисциплинарных проблем; это совокупность общих законов, методов, приемов исследования таких систем. Системный анализ - методология исследования сложных, часто не вполне определенных проблем теории и практики. Строго говоря, различают три ветви науки, изучающей системы: системологию (теорию систем) которая изучает теоретические аспекты и использует теоретические методы (теория информации, теория вероятностей, теория игр и др.); системный анализ (методологию, теорию и практику исследования систем), которая исследует методологические, а часто и практические аспекты и использует практические методы (математическая статистика, исследование операций, программирование и др.); системотехнику, системотехнологику (практику и технологию проектирования и исследования систем). За термин системотехнологика ответственность несет автор. Такое деление достаточно условно. Общим у всех этих ветвей является системный подход, системный принцип исследования - рассмотрение изучаемой совокупности не как простой суммы составляющих (линейно взаимодействующих объектов), а как совокупности нелинейных и многоуровневых взаимодействующих объектов. Любую предметную область также можно определить как системную. Пример. Информатика - наука, изучающая информационно-логические и алгоритмические аспекты системных процессов, системные аспекты информационных процессов. Это определение можно считать системным определением информатики. Системный анализ тесно связан с синергетикой. Синергетика - междисциплинарная наука, исследующая общие идеи, методы и закономерности организации (изменения структуры, ее пространственно-временного усложнения) различных объектов и процессов, инварианты (неизменные сущности) этих процессов. "Синергический" в переводе означает "совместный, согласованно действующий". Это теория возникновения новых качественных свойств, структур на макроскопическом уровне. Системный анализ тесно связан и с философией. Философия дает общие методы содержательного анализа, а системный анализ - общие методы формального, межпредметного анализа предметных областей, выявления и описания, изучения их системных инвариантов. Можно дать и философское определение системного анализа: системный анализ - это прикладная диалектика. Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры: абстрагирование и конкретизация; анализ и синтез, индукция и дедукция; формализация и конкретизация; композиция и декомпозиция; линеаризация и выделение нелинейных составляющих; структурирование и реструктурирование; макетирование; реинжиниринг; алгоритмизация; моделирование и эксперимент; программное управление и регулирование; распознавание и идентификация; кластеризация и классификация; экспертное оценивание и тестирование; верификация и другие методы и процедуры. Имеются следующие основные типы ресурсов в природе и в обществе. Вещество - наиболее хорошо изученный ресурс, который в основном представлен таблицей Д.И. Менделеева достаточно полно и пополняется не так часто. Вещество выступает как отражение постоянства материи в природе, как мера однородности материи. Энергия - не полностью изученный тип ресурсов, например, мы не владеем управляемой термоядерной реакцией. Энергиявыступает как отражение изменчивости материи, переходов из одного вида в другой, как мера необратимости материи. Информация - мало изученный тип ресурсов. Информация выступает как отражение порядка, структурированности материи, как мера порядка, самоорганизации материи (и социума). Сейчас этим понятием мы обозначаем некоторые сообщения; ниже этому понятию мы посвятим более детальное обсуждение. Человек - выступает как носитель интеллекта высшего уровня и является в экономическом, социальном, гуманитарном смысле важнейшим и уникальным ресурсом общества, рассматривается как мера разума, интеллекта и целенаправленного действия, мера социального начала, высшей формы отражения материи (сознания). Организация (или организованность) выступает как форма ресурсов в социуме, группе, которая определяет его структуру, включая институты человеческого общества, его надстройки, применяется как мера упорядоченности ресурсов. Организация системы связана с наличием некоторых причинно-следственных связей в этой системе. Организация системы может иметь различные формы, например, биологическую, информационную, экологическую, экономическую, социальную, временную, пространственную, и она определяется причинно-следственными связями в материи и социуме. Пространство - мера протяженности материи (события), распределения ее (его) в окружающей среде. Время - мера обратимости (необратимости) материи, событий. Время неразрывно связано с изменениями действительности. Можно говорить о различных полях, в которые "помещен" человек, - материальном, энергетическом, информационном, социальном, об их пространственных, ресурсных (материя, энергия, информация) и временных характеристиках. Пример. Рассмотрим простую задачу - пойти утром на занятия в вуз. Эта часто решаемая студентом задача имеет все аспекты: материальный, физический аспект - студенту необходимо переместить некоторую массу, например, учебников и тетрадей на нужное расстояние; энергетический аспект - студенту необходимо иметь и затратить конкретное количество энергии на перемещение; информационный аспект - необходима информация о маршруте движения и месторасположении вуза и ее нужно обрабатывать по пути своего движения; человеческий аспект - перемещение, в частности, передвижение на автобусе невозможно без человека, например, без водителя автобуса; организационный аспект - необходимы подходящие транспортные сети и маршруты, остановки и т.д.; пространственный аспект - перемещение на определенное расстояние; временной аспект - на данное перемещение будет затрачено время (за которое произойдут соответствующие необратимые изменения в среде, в отношениях, в связях). Все типы ресурсов тесно связаны и сплетены. Более того, они невозможны друг без друга, актуализация одного из них ведет к актуализации другого. Пример. При сжигании дров в печке выделяется тепловая энергия, тепловая энергия используется для приготовления пищи, пища используется для получения биологической энергии организма, биологическая энергия используется для получения информации(например, решения некоторой задачи), перемещения во времени и в пространстве. Человек и во время сна расходует свою биологическую энергию на поддержание информационных процессов в организме; более того, сон - продукт таких процессов. Социальная организация и активность людей совершенствует информационные ресурсы, процессы в обществе, последние, в свою очередь, совершенствуют производственные отношения. Если классическое естествознание объясняет мир исходя из движения, взаимопревращений вещества и энергии, то сейчас реальный мир, объективная реальность могут быть объяснены лишь с учетом сопутствующих системных, и особенно системно-информационных и синергетических процессов. Особый тип мышления - системный, присущий аналитику, который хочет не только понять суть процесса, явления, но и управлять им. Иногда его отождествляют с аналитическим мышлением, но это отождествление не полное. Аналитическим может быть склад ума, а системный подход есть методология, основанная на теории систем. Предметное (предметно-ориентированное) мышление - это метод (принцип), с помощью которого можно целенаправленно (как правило, с целью изучения) выявить и актуализировать, познать причинно-следственные связи и закономерности в ряду частных и общих событий и явлений. Часто это методика и технология исследования систем. Системное (системно-ориентированное) мышление - это метод (принцип), с помощью которого можно целенаправленно (как правило, с целью управления) выявить и актуализировать, познать причинно-следственные связи и закономерности в ряду общих и всеобщих событий и явлений. Часто это методология исследования систем. При системном мышлении совокупность событий, явлений (которые могут состоять из различных составляющих элементов) актуализируется, исследуется как целое, как одно организованное по общим правилам событие, явление, поведение которого можно предсказать, прогнозировать (как правило) без выяснения не только поведения составляющих элементов, но и качества и количества их самих. Пока не будет понятно, как функционирует или развивается система как целое, никакие знания о ее частях не дадут полной картины этого развития. Пример. В соответствии с принципом системного мышления общество состоит из людей (и, разумеется, из общественных институтов). Каждый человек - также система (физиологическая, например). У человека, в свою очередь, существуют присущие ему как организму системы, например, система кровообращения. Когда люди взаимодействуют с другими людьми, образуются новые системы - семья, этнос и др. Это взаимодействие может происходить на уровне общественных институтов, отдельных людей (например, социальные взаимодействия) и даже отдельных систем кровообращения (например, при прямом переливании крови). В соответствии с принципом системного подхода, каждая система влияет на другую систему. Весь окружающий мир - взаимодействующие системы. Цель системного анализа - выяснить эти взаимодействия, их потенциал и "направить их на службу человека". Предметный аналитик (предметно-ориентированный или просто аналитик) - человек, профессионал, изучающий, описывающий некоторую предметную область, проблему в соответствии с принципами и методами, технологиями этой области. Это не означает "узкое" рассмотрение этой проблемы, хотя подобное часто встречается. Системный (системно-ориентированный) аналитик - человек, профессионал высокого уровня (эксперт), изучающий, описывающий системы в соответствии с принципами системного подхода, анализа, т.е. изучающий проблему комплексно. Ему присущ особый склад ума, базирующийся на мультизнаниях, достаточно большом кругозоре и опыте, высоком уровне интуиции предвидения, умении принимать целесообразные ресурсообеспеченные решения. Его основная задача - помочь предметному аналитику принять правильное (сообразующееся с другими системами, не "ухудшающее" их) решение при решении предметных проблем, выявление и изучение критериев эффективности их решения. Необходимые атрибуты системного анализа как научного знания: наличие предметной сферы - системы и системные процедуры; выявление, систематизация, описание общих свойств и атрибутов систем; выявление и описание закономерностей и инвариантов в этих системах; актуализация закономерностей для изучения систем, их поведения и связей с окружающей средой; накопление, хранение, актуализация знаний о системах (коммуникативная функция). Системный анализ базируется на ряде общих принципов, среди которых: принцип дедуктивной последовательности - последовательного рассмотрения системы по этапам: от окружения и связей с целым до связей частей целого (см. этапы системного анализа подробнее ниже); принцип интегрированного рассмотрения - каждая система должна быть неразъемна как целое даже при рассмотрении лишь отдельных подсистем системы; принцип согласования ресурсов и целей рассмотрения, актуализации системы; принцип бесконфликтности - отсутствия конфликтов между частями целого, приводящих к конфликту целей целого и части. Системно в мире все: практика и практические действия, знание и процесс познания, окружающая среда и связи с ней (в ней). Системный анализ как методология научного познания структурирует все это, позволяя исследовать и выявлять инварианты (особенно скрытые) объектов, явлений и процессов различной природы, рассматривая их общее и различное, сложное и простое, целое и части. Любая человеческая интеллектуальная деятельность обязана быть по своей сути системной деятельностью, предусматривающей использование совокупности взаимосвязанных системных процедур на пути от постановки задачи, целей, планирования ресурсов к нахождению и использованию решений. Пример. Любое экономическое решение должно базироваться на фундаментальных принципах системного анализа, экономики,информатики, управления и учитывать поведение человека в социально-экономической среде, т.е. должно базироваться на рациональных, социально и экономически обоснованных нормах поведения в этой среде. Неиспользование системного анализа не позволяет знаниям (закладываемым традиционным образованием) превращаться в умения и навыки их применения, в навыки ведения системной деятельности (построения и реализации целенаправленных, структурированных, обеспеченных ресурсами конструктивных процедур решения проблем). Системно мыслящий и действующий человек, как правило, прогнозирует и считается с результатами своей деятельности, соизмеряет свои желания (цели) и свои возможности (ресурсы) учитывает интересы окружающей среды, развивает интеллект, вырабатывает верное мировоззрение и правильное поведение в человеческих коллективах. Окружающий нас мир бесконечен в пространстве и во времени; человек существует конечное время, располагая при реализации цели конечными ресурсами (материальными, энергетическими, информационными, людскими, организационными, пространственными и временными). Противоречия между неограниченностью желания человека познать мир и ограниченной (ресурсами, неопределенностью) возможностью сделать это, между бесконечностью природы и конечностью ресурсов человечества, имеют много важных последствий, в том числе - и для самого процесса познания человеком окружающего мира. Одна из таких особенностей познания, которая позволяет постепенно, поэтапно разрешать эти противоречия: использование аналитического и синтетического образа мышления, т.е. разделения целого на части и представления сложного в виде совокупности более простых компонент, и наоборот, соединения простых и построения, таким образом, сложного. Это также относится и к индивидуальному мышлению, и к общественному сознанию, и ко всему знанию людей, и к самому процессу познания. Пример. Аналитичность человеческого знания проявляется и в существовании различных наук, и в дифференциации наук, и в более глубоком изучении все более узких вопросов, каждый из которых сам по себе и интересен, и важен, и необходим. Вместе с тем, столь же необходим и обратный процесс синтеза знаний. Так возникают "пограничные" науки - бионика, биохимия, синергетика и другие. Однако это лишь одна из форм синтеза. Другая, более высокая форма синтетических знаний реализуется в науках о самых общих свойствах природы. Философия выявляет и описывает общие свойства всех форм материи; математика изучает некоторые, но также всеобщие отношения. К числу синтетических наук относятся системный анализ, информатика, кибернетика и др., соединяющие формальные, технические, гуманитарные и прочие знания. Итак, расчлененность мышления на анализ, синтез и взаимосвязь этих частей является очевидным признаком системности познания. Процесс познания структурирует системы, окружающий нас мир. Все, что не познано в данный момент времени, образует "хаос в системе", который, будучи необъясним в рамках рассматриваемой теории, заставляет искать новые структуры, новую информацию, новые формы представления и описания знаний, приводит к появлению новых ветвей знания; этот хаос также дает стимул и для развития умений и навыков исследователя. Системный подход к исследованию проблем, системный анализ - следствие научно-технической революции, а также необходимости решения ее проблем с помощью одинаковых подходов, методов, технологий. Такие проблемы возникают и в экономике, и в информатике, и в биологии, и в политике и т.д. RUP. Обследование организации (бизнес-анализ) Цели Цели бизнес-анализа заключаются в следующем: понять структуру и динамику работы организации; определить проблемы, возникающие в работе организации, и возможности их решения, направленного на повышение эффективности работы; гарантировать, что заказчики, конечные пользователи и разработчики будут иметь одинаковое понимание деятельности организации; вывести требования к программным системам, автоматизирующим работу организации. Организация описывается как с внешней точки зрения – какие результаты предоставляются ее клиентам, так и с внутренней – роли, и их связи с деятельностью организации. Эта информация служит системным аналитикам в качестве связующей при определении требований к ПС. Бизнес-анализ вовсе не является обязательным для каждого проекта разработки ПС. Если заказчик имеет хорошо отлаженный производственный цикл, использует программные средства автоматизации, точно представляет себе, какие производственные задачи должна решать новая ПС в дополнение к уже автоматизированным, то проведение бизнес-анализа может не потребоваться. Основным результатом бизнес-анализа является бизнес-модель, которая представляется на языке UML. Состав ее будет обсуждаться ниже. Здесь мы заметим, что UML позволяет строить модели любой системы, не обязательно программной, поэтому для описания работы организации используются те же логические и функциональные модели, что и для ПС. Единственное дополнение состоит в том, что в модели бизнеса должны присутствовать бизнес-исполнители – специалисты обследуемой организации, отвечающие за выполнение тех или иных работ. Роли В моделировании бизнеса участвуют: бизнес-аналитик – специалист организации-разработчика, который возглавляет и координирует работы по моделированию бизнеса; бизнес-разработчик – специалист организации-разработчика, который детализирует и уточняет бизнес модели, определяет бизнес-исполнителей их обязанности и действия; заинтересованные лица – люди, предоставляющие информацию. Это могут быть бизнес-исполнители или клиенты организации, а также прочие люди, заинтересованные как в собственно результатах моделирования, так и в будущей ПС. эксперт – представитель обследуемой организации, участвующий в разработке модели (консультации, организация встреч с заинтересованными лицами, оценка результатов). Эксперт, в частности, может быть одним из бизне-исполнителей. Артефакты При моделировании создаются следующие артефакты в виде текстовых документов и моделей, описанных на UML: Документ «Видение бизнеса» – определяет цели проведение бизнес-анализа. Структура организации – статическое описание подразделений организации и отношений подчиненности в виде диаграмм пакетов и/или классов. Модель видов деятельности включает бизнес-актеров и виды деятельности организации. К числу бизнес-актеров относятся: заказчики, партнеры, поставщики, власти (представители закона, инспекция и др.), дочерние организации, собственники и инвесторы, внешние информационные системы.Бизнес-актеры помогают определить границы организации, которую требуется описать. Виды деятельности представляют собой бизнес-процессы. Модель видов деятельности представляется с помощью usecase диаграмм. Объектная модель включает бизнес-актеров, бизнес-исполнителей и бизнес-сущности, а также содержит описание их взаимодействий при реализации видов деятельности. Модель представляется на UML с помощью диаграмм классов и взаимодействий (последовательностей, коопераций, деятельностей), которые иногда называют технологическими сценариями. Модель предметной области является подмножеством объектной модели. Она описывает основные бизнес-сущности и связи между ними. Эта модель представляется в виде диаграмм классов. Глоссарий – текстовый документ, содержащий определения основных понятий, используемых в данном бизнесе. Оценка деятельности организации – текстовый документ, описывающий текущее состояние организации, в которой будет использоваться ПС. Бизнес-правила – текстовый документ, определяющий условия и ограничения, которым должен удовлетворять бизнес. Дополнительные спецификации – текстовый документ, содержащий описание свойств бизнеса, не включенных в бизнес-модель. Процесс Процесс бизнес-анализа показан на рис.1.1 Построение всех предписываемых проекций модели бизнеса выполняется параллельно. Не всегда требуется создавать все проекции. В частности, иногда достаточно просто построить модель предметной области. Решение о составе модели принимает бизнес-аналитик. Все проекции модели разрабатываются параллельно. Например, при выявлении очередного бизнес-актера его включают в модель видов деятельности и в объектную модель, где показывается его взаимодействие с бизнес-исполнителями. При построении бизнес-модели используют нормативные документы организации (устав, штатное расписание и др.), а также информацию, предоставляемую заинтересованными лицами, для чего проводятся интервью и совещания, заполняются анкеты и опросные листы. Созданная в итоге бизнес-модель является основой для последующего моделирования ПС. Например, модель видов деятельности преобразовывается в модель ВИ. Такое преобразование может быть формализовано. Необходимо выделить те виды деятельности, которые подлежат автоматизации, и объявить их вариантами использования ПС, а также преобразовать бизнес-исполнителей в актеров, поскольку они являются внутренними сущностями организации, но внешними по отношению к системе. Модель предметной области включается как составная часть в логическую модель ПС, а технологические сценарии являются источником для определения потоков событий в ВИ. Рис.1.1 - Технологический процесс бизнес-анализа Системные исследования – термин, введенный в 70-х г.г. ХХ века для обобщения прикладных научных направлений, связанных с исследованием и проектированием сложных систем. В этот период по мере развития научно-технического прогресса усложняются выпускаемые изделия и технология производства промышленной продукции, расширяется ее номенклатура и ассортимент, увеличивается частота сменяемости выпускаемых изделий и технологий, возрастает наукоемкость продукции. Усиливается воздействие человека на экосистему, что приводит к усложнению взаимоотношений человека с природой, к истощению ресурсов Земли, к экологическим проблемам (проблема загрязнения среды, необходимость сохранения и очистки водных ресурсов и т.д.). В результате усложняются процессы управления экологической и социально-экономической системами и научно-техническим прогрессом. Для исследования перечисленных и других проблем развиваются разлчные направления фундаментальных и прикладных исследований: исследование операций, кибернетика, системотехника, системология и другие междисциплинарные направления, опирающиеся на теорию систем. Для того, чтобы не затруднять практических работников изучением особенностей этих направлений, их стали объединять общим термином системные исследования. Системный анализ (СА) признается в настоящее время наиболее конструктивным из направлений системных исследований. Этот термин впервые появился в 1948 г. в работах корпорации RAND в связи с задачами военного управления. Получил распространение в отечественной литературе после перевода книги С. Оптнера «системный анализ деловых и промышленных проблем». Системный анализ – междисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем [2]. В настоящее время в современной научной литературе существует весьма большое количество близких по смыслу определений понятия «система». В теории иерархических многоуровневых систем под системой понимается целостный материальный объект или их совокупность, представляющие собой закономерно обусловленную совокупность функционально взаимодействующих элементов [Д7]. Элементы системы - относительно обособленные части системы (структурные элементы). Они, не являясь системами одного типа, при непосредственном взаимодействии между собой порождают систему. Подсистема - совокупность взаимосвязанных и взаимодействующих элементов, реализующих определенную группу функций системы. Системы, обладающие многоуровневостью (иерархичностью) называются сложными системами. В других определениях системы понятие «цель» присутствует в неявном виде: по определению Ф.Е. Темникова) «система – организованное множество (в котором цель проявляется при раскрытии понятия организованности)», далее – в виде конечного результата, системообразующего критерия, функции (В.И. Вернадский, У.Р. Гибсон, П.К. Анохин). По определению Ю.И. Черняка, система есть отражение в сознании субъекта (исследователя, наблюдателя) свойства объектов и их отношений в решении задачи исследования, познания. В общем случае под системой понимают объективное единство закономерно связанных друг с другом предметов и явлений в природе и обществе. Характеристики такой системы определяются как характеристиками составляющих систему элементов, так и характеристиками взаимосвязей между ними. В данном курсе остановимся на следующем определении системы: Система есть множество компонент, взаимодействующих друг с другом и служащих общему назначению, или цели. Система имеет следующие основные характеристики (рис.1.1): Компоненты. Отношения (связи, посредством которых осуществляется взаимодействие между компонентами). Граница. Цель. Внешняя среда. Вход, Выход. Интерфейс. Законы, правила, ограничения функционирования. Системные характеристики можно описать следующим образом: 1. Компонент есть либо неделимая часть, либо агрегат, состоящий из частей и называемый подсистемой. 2. Компоненты взаимодействуют между собой таким образом, что функционирование одного влияет на функционирование другого компонента. 3. Система имеет границу, внутри которой содержатся все компоненты, и которая устанавливает пределы системы, отделяя ее от других систем. 4. Все компоненты работают вместе, чтобы достичь цель существования системы. Рис. 1.1. Характеристики системы. 5. Система существует и функционирует внутри окружающей (внешней) среды – всего, что находится за границей системы. Окружающая среда влияет на систему и подвергается влиянию системы. 6. Система имеет множество входных и выходных объектов. 7. Точка, в которой система взаимодействует со средой, называется интерфейсом. 8. Система имеет законы, правила, ограничения функционирования. Сложные динамические системы обладают следующими системообразующими факторами [6]: целостность и возможность декомпозиции на элементы O (объекты, подсистемы); наличие стабильных связей (отношений) R между элементами O; упорядоченность (организация) элементов в определенную структуру (Str); наделение элементов параметрами (AO); наличие синергетических (интегративных) свойств Q, которыми не обладают ни один из элементов системы; наличие множества законов, правил и операций Z с вышеперечисленными атрибутами системы; наличие цели функционирования и развития (G). В определении М. Месаровича выделены множество X входных объектов (воздействующих на систему) и множество Y выходных результатов, а между ними установлено обобщающее отношение пересечения, что можно отобразить как у автора определения: . Таким образом, система есть совокупность Syst={O(AO), R, Str, Q, Z, G, S}. Данное определение более полно отражает содержательную сторону системы, чем известные определения, основанные на первых трех признаках: элементах, связях и их упорядоченности в единое целое. Параметризация структурных элементов позволяет конкретизировать систему, придавать ей индивидуальность, а также выделять то множество свойств, которое присуще данной системе. При этом к свойствам системы можно отнести ее способность к адаптации, к самоорганизации, к обеспечению устойчивости, к выполнению различных сложных функций (самосохранения, саморазвития и т.д.). К свойствам системы можно отнести и ее способность к формированию целей функционирования и развития и к организации их достижения. Наличие множества Z законов, правил и операций способствует созданию того формального аппарата, который позволяет на математическом (абстрактном) уровне строить из множества A элементов и множества R связей различные структуры систем, а также анализировать их и синтезировать системы с заданными свойствами. Данное определение системы используется в дальнейшем при исследовании (анализе, моделировании) сложных управляемых систем с целью установления связи между структурой, параметрами и свойствами системы при их поведении в проблемных ситуациях. Современный этап развития теории и практики характеризуется повышением уровня системности. Ученые, инженеры, представители различных профессий оперируют такими понятиями, как системный или комплексный подход. Полезность и важность системного подхода вышла за рамки специальных научных истин и стала привычной, общепринятой. Такая ситуация явилась отражением объективных процессов развития представлений о материальном мире, сформировалась под воздействием объективных факторов. Свойство системности является всеобщим свойством материи. Современные научные данные и современные системные представления позволяют говорить о мире как о бесконечной иерархической системе систем. Причем части системы находятся в развитии, на разных стадиях развития, на разных уровнях системной иерархии и организации. Системность как всеобщее свойство материи проявляется через следующие составляющие: системность практической деятельности, системность познавательной деятельности и системность среды, окружающей человека. Рассмотрим практическую деятельность человека, т. е. его активное и целенаправленное воздействие на окружающую среду. Покажем, что человеческая практика системна. Отметим очевидные и обязательные признаки системности: структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели. По отношению к человеческой деятельности эти признаки очевидны. Всякое осознанное действие преследует определенную цель. Во всяком действии достаточно просто увидеть его составные части, более мелкие действия. При этом легко убедиться, что эти составные части должны выполняться не в произвольном порядке, а в определенной их последовательности. Это и есть та самая определенная, подчиненная цели взаимосвязанность составных частей, которая и является признаком системности. Название для такого построения деятельности - алгоритмичностъ. Понятие алгоритма возникло сначала в математике и означало задание точно определенной последовательности однозначно понимаемых операций над числами или другими математическими объектами. В настоящее время понятие алгоритма применяется к различным отраслям деятельности. Так говорят не только об алгоритмах принятия управленческих решений, об алгоритмах обучения, алгоритмах написания программ, но и об алгоритмах изобретательства [2]. Алгоритмизуются такие виды деятельности как игра в шахматы, доказательство теорем и т. п. При этом делается отход от математического понимания алгоритма. Важно сознавать, что в алгоритме должна сохраняться логическая последовательность действий. При этом допускается, что в алгоритме определенного вида деятельности могут присутствовать неформализованные виды действия. Важно лишь, чтобы определенные этапы алгоритма успешно, хотя бы и неосознанно, выполнялись человеком. Примеры систем. 1) Самолет - это летательный аппарат тяжелее воздуха с аэродинамическим принципом полета. При полете используются: несущие поверхности самолета (крыло и оперение) для создания с помощью воздушной среды подъемной и управляющих сил, силовая установка - для создания движущей силы за счет энергии находящегося на борту самолета топлива. Для передвижения по земле - разбега, пробега и руления, а также для стоянки самолет снабжен системой опор - шасси. В соответствии с назначением самолеты имеют определенную целевую нагрузку, оборудование и снаряжение, систему управления . Таким образом, самолет представляет собой сложную динамическую систему с развитой иерархической структурой, состоящую из взаимосвязанных по назначению, месту и функционированию элементов; в нем можно выделить подсистемы создания подъемной и движущей сил, обеспечения устойчивости и управляемости, жизнеобеспечения, обеспечения выполнения целевой функции и др. 2) Вычислительная сеть – сложная система, которая состоит из вычислительных машин и сети передачи данных (сети связи). Основное назначение вычислительных сетей - обеспечение взаимодействия удаленных пользователей на основе обмена данными по сети и совместное использование сетевых ресурсов (вычислительных машин, прикладных программ и периферийных устройств). 3) Университет – образовательное учреждение, которое реализует программы обучения разных уровней и проводит научные исследования по приоритетным направлениям. Цель функционирования системы образования – обеспечение современного качества образования на основе сохранения его фундаментальности и соответствия актуальным и перспективным потребностям личности, общества и государства. Система управления университетом включает следующие подстистемы: организационная, учебная, финансовая, административно-хзяйственная, научно-исследовательская, управления кадрами, управления капитальным строительством, и др. Окружающая среда университета включает будущих (потенциальных) студентов, работодателей, институциональные учреждения, службы занятости и др. Университет взаимодействует с абитуриентами и предприятиями – пользователями образовательных услуг. Приведенные примеры систем иллюстрируют наличие таких факторов системности, как целостность и возможность декомпозиции на элементы O (в вычислительной сети это вычислительные машины, средства связи и др.); наличие стабильных связей (отношений) R между элементами O; упорядоченность (организация) элементов в определенную структуру (Str); наделение элементов параметрами (AO); наличие синергетических (интегративных) свойств Q, которыми не обладают ни один из элементов системы (взаимодействие удаленных пользователей, Web-услуги, электронная коммерция); наличие множества законов, правил и операций Z с вышеперечисленными атрибутами системы; наличие цели функционирования и развития (G). 1.2. Классификация систем Подходы к классификации системы могут быть самыми разными: • по виду отображаемого объекта-технические, биологические, социальные и т. п.; • по характеру поведения - детерминированные, вероятностные, игровые; • по типу целеустремленности - открытые и закрытые; • по сложности структуры и поведения - простые и сложные; • по виду научного направления, используемого для их моделирования - математические, физические, химические и др.; • по степени организованности - хорошо организованные, плохо организованные и самоорганизующиеся. Рассмотрим некоторые из представленных видов классификации. Детерминированной системой называется система, состояние которой в будущем однозначно определяется ее состоянием в настоящий момент времени и законами, описывающими переходы элементов и системы из одних состояний в другие. Составные части в детерминированной системе взаимодействуют точно известным образом. Примером детерминированной системы может служить механический арифмометр. Установка соответствующих чисел на валике и задание порядка вычисления однозначно определяют результат работы устройства. То же самое можно сказать о калькуляторе, если считать его абсолютно надежным. Вероятностные или стохастические системы - это системы, поведение которых описывается законами теории вероятностей. Для' вероятностной системы знание текущего состояния и особенностей взаимной связи элементов недостаточно для предсказания будущего поведения системы со всей определенностью. Для такой системы имеется ряд направлений возможных переходов из одних состояний в другие, т. е. имеется группа сценариев преобразования состояний системы, и каждому сценарию поставлена в соответствие своя вероятность. Примером стохастической системы может служить мастерская по ремонту электронной и радиотехники. Срок выполнения заказа по ремонту конкретного изделия зависит от количества аппаратуры, поступившей в ремонт до поступления рассматриваемого изделия, от характера повреждений каждого из находящихся в очереди объектов, от количества и квалификации обслуживающего персонала и т. п. Игровой является система, осуществляющая разумный выбор своего поведения в будущем. В основе выбора лежат оценки ситуаций и предполагаемых способов действий, выбираемых на основе заранее сформированных критериев, а также с учетом соображений неформального характера. Руководствоваться этими соображениями может только человек. Примером игровой системы может служить организация, выполняющая некоторые работы и выступающая в качестве исполнителя. Исполнитель вступает в отношения с заказчиком. Интересы исполнителя и заказчика противоположные. Исполнитель старается продать свою работу как можно выгоднее. Заказчик, наоборот, пытается сбить цену и соблюсти свои интересы. В данном торге между ними проявляется игровая ситуация. Классификация по данному признаку условна, как и многое другое, касающееся характеристики сложных систем. Она допускает разные толкования принадлежности той или иной системы к сформированным классам. Так в детерминированной системе можно найти элементы стохастичности. С другой стороны, детерминированную систему можно считать частным случаем стохастической системы, если положить вероятности переходов из состояния в состояние соответственно равными нулю (перехода нет) и единице (переход имеет место). Точно также стохастическую систему можно рассматривать как частный случай игровой, когда идет игра с природой. Следующий признак классификации: открытые и закрытые системы. По данному признаку классификации системы характеризуются различной степенью взаимодействия с внешней средой. Открытые системы обладают особенностью обмениваться с внешней средой массой, энергией, информацией. Замкнутые (или закрытые) системы изолированы от внешней среды. Предполагается, что разница между открытыми и замкнутыми системами определяется с точностью до принятой чувствительности модели. По степени сложности системы подразделяются на простые, сложные и очень сложные. Простые системы характеризуются небольшим количеством возможных состояний, их поведение легко описывается в рамках той или иной математической модели. Сложные системы отличаются разнообразием внутренних связей, но допускают их описание. Причем набор методов, привлекаемых для описания сложных систем, как правило, многообразен, т. е. для построения математической модели сложной системы применяются различные подходы и разные разделы математики. Очень сложные системы характеризуются большой разветвленностью связей и своеобразностью отношений между элементами. Многообразие связей и отношений таково, что нет возможности все их выявить и проанализировать. Простыми системами можно считать лентопротяжные механизмы, механические передачи, системы слежения за целью и т.д. Сложными системами являются электронно-вычислительная машина, система управления и защиты энергоблока, система электроснабжения промышленного объекта и пр. Очень сложными являются социотехнические системы, такие как автоматизированные системы управления крупным предприятием, экспертные системы с функциями поддержки и принятия управленческих решений. Классификация по признаку организованности систем впервые была предложена В.В. Налимовым [2]. Под хорошо организованной системой понимается система, у которой определены все элементы, их взаимосвязь, правила объединения в более крупные компоненты, связи между всеми компонентами и целями системы, ради достижения которых создается или функционирует система. При этом подразумевается, что все элементы системы с их взаимосвязями между собой, а также с целями системы можно отобразить в виде аналитических зависимостей. При формулировании задачи принятия решения для хорошо организованной системы проблемная ситуация описывается в виде математического выражения, критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением, системой уравнений, сложными математическими моделями, включающими в себя и уравнения, и неравенства, и т. п. Важно, что решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами с использованием моделей формализованного представления системы. Примером хорошо организованной системы может служить сложное электронное устройство. Описание его работы производят с помощью системы уравнений, учитывающих условия функционирования, в том числе наличие шумов, нестабильность электропитания и т.д. При представлении объекта в виде плохо организованной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между собой, а также с целями системы. Для плохо организованной системы формируется набор макропараметров и функциональных закономерностей, которые будут ее характеризовать. Определение этих параметров и восстановление функциональных зависимостей осуществляется на основании некоторой выборочной информации, характеризующей исследуемый объект или процесс. Далее полученные оценки характеристик распространяют на поведение системы в целом. При этом предполагается, что полученный результат обладает ограниченной достоверностью и его можно использовать с некоторыми оговорками. Так, например, если результат получен на основании статистических наблюдений за функционированием системы на ограниченном интервале времени, т. е. на основании выборочных наблюдений, то его можно использовать с некоторой доверительной вероятностью. Примером применения подхода к отображению объектов в виде плохо организованной системы можно считать оценивание характеристик надежности системы с множеством компонентов. В данном случае характеристики надежности группы однотипных элементов определяются на основании выборочной информации, полученной в результате наблюдений за их работой на ограниченном отрезке времени при определенных уровнях воздействующих факторов. Затем полученные оценки распространяются на весь период эксплуатации объекта. Данные оценки используются при проведении расчетов характеристик надежности всей системы. Самоорганизующиеся системы - это системы, обладающие свойством адаптации к изменению условий внешней среды, способные изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности, системы, способные формировать возможные варианты поведения и выбирать из них наилучшие. Эти особенности обусловлены наличием в структуре системы активных элементов, которые, с одной стороны, обеспечивают возможность адаптации, приспособления системы к новым условиям существования, с другой стороны, вносят элемент неопределенности в поведение системы, чем затрудняют проведение анализа системы, построение ее модели, формальное ее описание и, в конечном счете, затрудняют управление такими системами. Примерами самоорганизующихся систем могут служить биологические системы, предприятия и их система управления, городские структуры управления и т.д. 1.3. Сущность системного подхода Системный подход предполагает анализ среды, в которой предстоит функционировать проектируемой системе, определение функций системы и необходимой для ее работы информации [2]. Этапы проектирования системы включают в себя: постановку задачи на проектирование, построение модели исследуемой системы, определение с ее помощью структуры системы, решение проблемы уменьшения вероятности ошибок функционирования, экспериментальную проверку результатов и разработку рекомендаций по внедрению. При системном подходе к проектированию необходимо произвести декомпозицию сложной системы на подсистемы, что дает возможность более детального исследования различных элементов системы. Затем, определив подсистемы и проведя исследование их взаимосвязей, следует установить методы их интеграции и создать комплексное целое, установив, тем самым, общую структуру системы. В соответствии с введенным определением системы принята общая методика анализа предметной области. Вначале выделяется множество значимых сущностей из этой области; данное множество называется областью интерпретации. На следующем этапе определяется, какие функции над элементами области интерпретации представляются важными. Затем идентифицируются значимые отношения, которые существуют между элементами области интерпретации. В заключение значимые отношения оформляются синтаксически, то есть при помощи аксиом. Таким образом, знаниями являются описания отношений между абстрагированными понятиями и сущностями, являющимися конкретными объектами предметной области. Применение ЭВМ как инструмента решения сложных задач позволило перейти о построения теоретических моделей систем к их практическому применению. |