Главная страница

Линейные балансовые модели в экономике.. Линейные балансовые модели в экономике. Линейные балансовые модели в экономике


Скачать 0.52 Mb.
НазваниеЛинейные балансовые модели в экономике
АнкорЛинейные балансовые модели в экономике
Дата06.03.2020
Размер0.52 Mb.
Формат файлаdoc
Имя файлаЛинейные балансовые модели в экономике.doc
ТипДокументы
#111130
страница20 из 21
1   ...   13   14   15   16   17   18   19   20   21
j к началу планового периода.



Балансовый характер этой схемы заключается в том, что ее элементы должны удовлетворять следующим (балансовым) соотношениям:



Здесь - производственные затраты, - дополнительные затраты, соответствующие приращению производства на вектор , а - конечное потребление в год t. Поэтому условие (6.3.1) требует, чтобы весь годичный запас товаров покрывал все годичные затраты ежегодно. Неравенство (6.3.2) задает условие на необходимый объем трудовых ресурсов, неравенство (6.3.3) говорит о том, что запасы на данный год не могут превышать результатов производства предыдущего года, и, наконец, уравнение (6.3.4) описывает динамику роста валового выпуска из года в год.

Если сравнить систему (6.3.1)-(6.3.5) с моделью Леонтьева (6.2.1), то можно заметить, что последняя получается из (6.3.1) при отсутствии приращения производства, т.е. когда . Дополнительные условия (6.3.2)-(6.3.4) вызваны необходимостью учета трудовых ресурсов и динамического характера развития производства. Как и модель Леонтьева, данная схема может быть обобщена и детализирована по ряду параметров. В приведенном здесь виде наиболее нереальным является условие (6.3.4), которое предполагает (при ) получение результатов от затрат, осуществляемых в начале периода , уже к концу этого периода. Условие (6.3.4) можно переписать так:



В этом равенстве последнее слагаемое имеет смысл приращения производства за первые t лет по сравнению с начальным объемом выпуска. Доля такого приращения, приходящаяся на одну единицу начального валового выпуска, есть





Введем величину . Тогда уравнение (6.3.4) можно написать в виде



Представление динамики производства в подобном виде будет использовано нами в следующем параграфе. Здесь заметим только, что более адекватным описанием динамики производства, чем (6.3.4), представляется равенство



где - отнесенный к моменту t временной лаг, ().

Обозначим и составим матрицы



с помощью которых систему (6.3.1)-(6.3.5) перепишем в виде



В математической экономике магистралью называется траектория экономического роста, на которой пропорции производственных показателей (такие как темп роста производства, темп снижения цен) неизменны, а сами показатели (такие как интенсивность производства, валовый выпуск) растут с постоянным максимально возможным темпом. Таким образом, магистраль - это траектория или луч максимального сбалансированного роста. Ее часто сравнивают со скоростной автострадой. Так, например, для того чтобы добраться из Кемерово в Киселевск как можно быстрее, наиболее целесообразно сначала проехать по автостраде Кемерово-Новокузнецк, а затем уже съехать на ответвляющуюся от нее дорогу в районе Киселевска. Так мы потеряем на дорогу меньше времени и доедем до конечного пункта с большим комфортом, чем если бы мы ехали по обычному шоссе через Ленинск-Кузнецкий и Белово.

Поскольку "оптимальное" или "эффективное" развитие экономики в любом смысле так или иначе связано и должно сопровождаться экономическим ростом, то для достижения любой конечной цели следует поступать аналогичным образом: сначала вывести производство на магистральный путь, т.е. на траекторию (или луч) Неймана, характеризующуюся максимальным темпом роста и минимальной нормой процента
1   ...   13   14   15   16   17   18   19   20   21


написать администратору сайта