Главная страница

цвет зинченко. Зинченко В.П., Мунипов В.М. ''Основы эргономики%22. Литература 25 Краткая история развития эргономики 27


Скачать 4.07 Mb.
НазваниеЛитература 25 Краткая история развития эргономики 27
Анкорцвет зинченко
Дата21.04.2023
Размер4.07 Mb.
Формат файлаdoc
Имя файлаЗинченко В.П., Мунипов В.М. ''Основы эргономики%22.doc
ТипЛитература
#1079452
страница22 из 30
1   ...   18   19   20   21   22   23   24   25   ...   30

§2. Пространственные характеристики зрительной информации



При проектировании и эксплуатации средств отображения рассматриваются три группы факторов: 1) размещение средств: отображения на рабочем месте и в оперативных залах; 2) опти­мальные размеры знаков и их элементов в разных системах ото­бражения; 3) оптимальная компоновка знаков на средствах ото­бражения. Размещение средств отображения в оперативном зале. Разме­щение средств отображения в поле зрения наблюдателя должно производиться с учетом оптимальных углов обзора и зон наблю­дения.

При рассматривании объектов сложной конфигурации, а также при восприятии объемного и перспективного изображения опти­мальный угол обзора и горизонтальной плоскости составляет 30— 40°. Для восприятия плоского изображения со сравнительно про­стой знаковой индикацией рекомендуется угол обзора 50—60°, охватывающий зону °неясного различения формы (в пределах этого угла наблюдатель замечает происходящие изменения перифериче­ским зрением, а для точного рассмотрения объекта переводит на него взгляд). Предельный угол обзора при одновременном дви­жении глаз и головы составляет 180°. Однако при отображении информации с требованиями высокой скорости ее обработки до­пустимый угол обзора составляет 90°.

В вертикальной плоскости оптимальный угол обзора состав­ляет 0—30° по отношению к горизонтали (15° вверх и 15° вниз от нормальной линии взора). Нормальная линия взора соответст­вует наиболее удобному положению глаз и головы при рассматри­вании объектов и располагается под углом 15° вниз от горизон­тальной линии взора. Максимальный угол обзора в вертикальной плоскости при повороте только глаз составляет 70°, при одновре­менном движении глаз и головы предельный угол видимости со­ставляет 90° вверх и 55° вниз от горизонтали. В соответствии с ними проектируются высота и ширина индикаторов, их пропор­ции. Рассчитываются при заданных размерах индикаторных устройств расположение наблюдателей в горизонтальной и верти­кальной плоскостях, углы наклона индикационных устройств, взаимное расположение индикационных средств на рабочих местах и средств отображения коллективного пользования в оперативном помещении.

Большие экраны, находящиеся на значительном расстоянии от операторов, располагаются вертикально. Исходя из соотношения вертикального и горизонтального углов обзора ширина экрана примерно вдвое больше его высоты. При ширине экрана меньше 10 м отношение ширины экрана к его высоте берется равным 1,3:1. Лучшее для наблюдателя место находится на расстоянии, которое в 2—2,5 раза больше ширины экрана. Максимальное рас­стояние до большого экрана в 8 раз больше ширины экрана. Рас­положение экрана должно производиться с учетом отношения к линии взора наблюдателя. Точность восприятия изображения зависит от величины угла, под которым оно рассматривается. Оптимальный угол наблюдения составляет ±15° к нормали экра­на. При рассматривании изображения сбоку допустимый угол обзора составляет 45° к нормали экрана.

Общие требования к организации оптимальных зон наблюде­ния применимы и при размещении индикаторов на пультах. Дополнительно учитывается необходимость одновременного обзора коллективных средств отображения и индикаторов на рабочих местах. В соответствии с этим расположение ЭЛТ, телевизоров, дисплеев должно быть ниже линии взора. Для сидящего операто­ра расстояние от пола до линии взора составляет 1240—1250 мм.

Расположение индикаторов оптимально в вертикальном угле обзора 45° вниз от горизонтальной линии взора оператора.

Для оптимальных условий наблюдения плоскость лицевых па­нелей индикаторов должна приближаться к перпендикулярному расположению по отношению к линии взора. Это достигается наклоном лицевых панелей. Из практики проектирования рабочих мест оператора наклон трубок составляет от 0—4 до 0—20° к вер­тикали. Пространственное размещение индикационных устройств, невозможно без учета светотехнических характеристик индикато­ров, и прежде всего коэффициента яркости, определяющего види­мую яркость изображения при изменении пространственного поло­жения наблюдателя.

Оптимальные размеры знаков и их элементов. Оптимальные размеры знаков соответствуют понятию оперативных порогов восприятия, при которых обеспечиваются максимальная точность и скорость восприятия и опознания человеком поступающей ин­формации.

Оптимальный размер знаков, предъявляемых да средствах ото­бражения, рассчитывается с учетом яркости знаков, величины кон­траста, вида контраста, сложности графического начертания зна­ков, использования цвета. Предъявляемые знаки подразделяются на две группы: алфавит буквенно-цифровой и алфавит условных знаков.

Допустимый размер букв и цифр при учете только точности считывания на фоне других знаков составляет 18—20°.

При одновременном учете точности и скорости опознания опти­мальный размер знаков составляет 35—40°.

Для читаемости цифр необходимо выдерживать оптимальные соотношения основных параметров знака: высоты, ширины, тол­щины обводки. Толщина линий для знаков обратного контраста составляет 1/10 к высоте знака. Знаки, рассматриваемые на про­свет, могут иметь меньшую толщину обводки — 1/30; 1/40. Эти вели­чины значительно меньше тех, которые рекомендованы для про­порций знаков прямого контраста в силу иррадиации, увеличиваю­щей видимую толщину штрихов и уменьшающей видимое про­странство между элементами знака. Однако в целом ряде случаев уменьшение толщины знаков нежелательно по ряду обстоятельств. Одно из них связано с необходимостью введения цвета как опти­мального кода при отображении информации. Правильная иден­тификация цвета возможна только при размерах цветовых полей не меньше критических. При их дальнейшем уменьшении цвет поверхностей сильно искажается. Для а<15° желтый, зеленый и пурпурный цвета меняют свой оттенок соответственно на сине-зеленый, темно-серый и коричневый. Наибольшему изменению под­вержены желтый и синий цвета, которые при а<2° практически воспринимаются как ахроматические. Поэтому при введении цвета оптимальные размеры знаков рассчитываются, исходя из необхо­димой толщины штрихов для передачи цвета с соблюдением про­порций знака для прямого контраста.

Размер знака в 35—40° при К>60% в указанных пропорциях обеспечивает хорошую их различимость с введением основных ко­довых цветов.

Взаимное расположение линий, образующих знак, в соответст­вии с показателями остроты зрения, влияет на читаемость знаков. Лучшим из начертаний цифр обычного типа считается шрифт Макворта, в котором наклонные линии в знаках расположены под углом в 45°, и шрифт Бергера, в котором буквы и цифры состав­лены прямыми линиями.

Для алфавита условных знаков оптимальная величина знака, обеспечивающая наиболее быстрое и точное восприятие, зависит от сложности их конфигурации. Для знаков простой конфигура­ции, представляющих собой контур — треугольник, квадрат, тра­пецию, овал и т. п., величина оперативного порога опознания со­ставляет 18±1° для наибольшей грани контура. При определении размера сложных знаков следует учитывать как величину знака в целом и величину его детали, так и наименьшее расстояние меж­ду его деталями. При знаках средней сложности — с деталями внутри и снаружи контура, угловой размер знака должен состав­лять 21 ± 1°. Размер наименьшей детали — 4—5°. Если знак слож­ный — с наружными и внутренними деталями, его опознавание затруднено и безошибочная работа осуществляется при больших размерах знаков а=35±2°. Размер наименьших деталей должен составлять 6°.

Оптимальное соотношение величины условного знака и цифро­вой информации, относящейся к нему, 2 : 1 или 1,8: 1.

Знаки, компонуемые из дискретных светящихся элементов. Для отображения алфавитов знаков используются ЭЛТ специаль­ного назначения. Отображаемые знаки компонуются из дискретных светящихся элементов: способом точечных матриц или строчного изображения. Для них определяются число элементов изображе­ния, размер и площадь элементов изображения, расстояние между элементами знака. Оптимальный размер знаков определяется ха­рактеристиками оперативной работы и соотносится с требования­ми, предъявляемыми к печатным знакам.

Минимальная же величина знака зависит от числа элементов, необходимых для их опознания. Для растрового способа мини­мальное число линий растра для букв и цифр равно 10. Для точ­кой матрицы число точек такое же.

Читаемость знаков, образованных с помощью точечных матриц и растровым способом, одинакова, однако операторы предпочи­тают точечные знаки.

Оценка скорости и точности по параметрам необходимого ко­личества элементов разложения для букв русского алфавита и цифр показала преимущество матриц 6x9 и 5X7 при растровом способе знакогенерирования и 8—16 элементов при функцио­нальном.

Следует добиваться неразличимости элементов изображения: точек матрицы, растра и др.

Для получения непрерывного изображения нужно, чтобы рас­стояние между краями соседних пятен было меньше 1°. Для полу­чения изображения с иллюзией непрерывной яркости нужно обес­печить условие, при котором меньше 1° должно быть расстояние между центрами пятен.

Если дискретная структура знака заметна, читаемость знака, помимо перечисленных факторов, определяется воспринимаемой яркостью элементов изображения. Воспринимаемая яркость не за­висит от размеров (площади) элементов, если они составляют не меньше 2°. Однако при меньших размерах воспринимаемая яркость определяется произведением площади изображения на интен­сивность светового потока (закон Рикко) и, следовательно, будет ослабевать с уменьшением размеров светящихся эле­ментов.

Оптимальные характеристики компоновки знаков. В процессе обработки сигналов глаз совершает движения от объекта к объек­ту с их последовательной фиксацией. Содержательная обработка информации осуществляется в момент фиксации, движение же глаз обеспечивает последовательность обработки воспринимаемой информации.

В соответствии с закономерностями этих двух этапов «поведе­ния» глаза формулируются требования к компоновке знаков и их взаимному расположению в контролируемом пространстве.

Требования к компоновке знаков определяются величиной опе­ративного поля зрения и разрешающей способностью двигательной системы глаза. Величина оперативного поля зрения ограничивает количество объектов для одномоментной (200—300 мс) перера­ботки зрительной информации.

Разрешающая же способность глаза определяет плотность рас­положения объектов или одномоментно воспринимаемых групп.

В практике отображения возможны два разных способа пред­ставления информации: организованное и «хаотическое».

К первому относятся формулярный и табличный способы орга­низации знаковой информации.

Формуляр — это объединенные в компактную группу буквы, цифры и условные знаки, кодирующие данные о контролируемых объектах.

Исходя из величины оперативного поля зрения количество зна­ков в строке формуляра не должно превышать 4—5 цифр. Опти­мальное общее число знакомест в формуляре — 12. Это число определено на основании минимального числа фиксаций при счи-тывании формуляра и минимального времени селекции отдельных типов сообщений и расшифровки сведений, закодированных циф­рами и буквами.

Для оптимального выделения информации, кодируемой в фор­муляре на определенных знакоместах, необходимо выдерживать определенные расстояния между его элементами.

Рекомендуются следующие интервалы между элементами фор­муляра:

— между условным знаком и формуляром, к нему относящим­ся, не менее 1/4высоты условного знака;

— между отдельными знаками в формуляре 1/2 ширины знака; — между строками 1/2 высоты знака.

Табличный способ представляет собой распределение знаков по столбцам и строчкам, имеющим самостоятельное значе­ние. Считывание нужных данных обеспечивается при безоши­бочном определении координат информации, извлекаемой из таблицы.

Точное и безошибочное считывание информации с таблицы осуществляется при ее оптимальной организации, учитывающей общий размер таблицы (в угловых величинах), число столбцов и строк, общее число знаков в таблице, плотность знаков по верти­кали и горизонтали, степень однородности таблицы.

При обычных способах работы с цифровыми таблицами необ­ходимо, чтобы размеры самостоятельных частей таблицы не пре­вышали величины оперативного поля зрения. Плотность располо­жения объектов должна быть больше величины, вызывающей дви­гательные шумы глаза.

Допустимая плотность чисел в таблице зависит от общих раз­меров таблицы, с которой считывается информация. Чем меньше общий размер таблицы, тем с большей плотностью можно рас­полагать числа при сохранении режима быстрого и точного считы­вания.

Оптимальные соотношения плотности чисел и величины табли­цы, в которой возможно точное и быстрое прослеживание чисел или их нахождение по заданным координатам, составляют 3° при плотности в 10°, 5—7° при плотности в 15°, 10—15° при плотности чисел в 20°. При больших таблицах рекомендуемая плотность чи­сел составляет не менее 60°. При плотности в 40—50° безошибоч­ная работа выполняется с большим напряжением.

Соответствие размерам оперативного поля зрения достигается делением общего поля таблицы разграничительными линиями либо другими способами, уменьшающими ее однородность. Рекомендуются интервалы: — между отдельными знаками (цифрами) интервал должен

составлять величину, равную толщине обводки; — между столбцами (числами) — от 1/2 ширины знака до рас­стояния, равного высоте знака.


1   ...   18   19   20   21   22   23   24   25   ...   30


написать администратору сайта