Определение и сущность железобетона. Определение и сущность железобетон. Литература Филиппов П. П. Как внешние сигналы передаются внутрь клетки
Скачать 0.88 Mb.
|
Деформативность бетонаКлассы и марки бетона В зависимости от назначения железобетонных конструкций и условий их эксплуатации нормы проектирования СП 52-101-2003 устанавливают показатели качества бетона (их несколько). Важнейшим из них является класс бетона по прочности на осевое сжатие В. Он указывается в проектах во всех случаях как основная характеристика бетона. Классом бетона по прочности на осевое сжатие В называется наименьшее контролируемое значение временного сопротивления сжатию бетонных кубов с размером ребра 150 мм, испытанных после 28 суток твердения при температуре t = 20 ± 2°С и относительном влажности воздуха более 60% с соблюдением всех требований стандарта, которое принимается с доверительной вероятностью 0,95. Для бетонных и железобетонных конструкций нормами проектирования СНиП 52-01-2003 по прочности на сжатие предусмотрены следующие классы тяжёлого бетона: В3,5; В5; В7,5; B10; B15; В20; В25; В30; В35; В40; В45; В50; В55; В60; В65; В70; В75; В80; В85; В90; В95; В100; В105; В110; В115; В120. Число, стоящее после буквы «В» в обозначении класса бетона, соответствует гарантированной прочности бетона на осевое сжатие, выраженной в МПа, с обеспеченностью 95%. Например, классу бетона В20 соответствует гарантированная прочность бетона 20 MПa. Чтобы оценить количественно изменчивость прочности бетона и обеспечить её гарантированное для заданного класса бетона значение используют методы теории вероятностей. Классы бетона по прочности на осевое растяжение (Вt0,4; Вt0,8; Вt1,2; Вt1,6; Вt2; Вt2,4; Вt2,8; Вt3,2; Вt3,6; Вt4; Вt4,4; Вt4,8; Вt5,2; Вt5,6; Вt6) устанавливаются для конструкций, работающих преимущественно на растяжение (например, стенок резервуаров и водонапорных труб). Кроме того, при необходимости для более полной характеристики качеств бетона могут устанавливаться марки бетона по морозостойкости F, по водонепроницаемости W и по средней плотности D. В п. 5.1.3. СНиП 52-01-2003 предусмотрены бетоны следующих марок: - по морозостойкости F15, F20, F25, F50, F75, F100, F150, F200, F300, F400, F500, F600, F700, F800, F900, F1000, они характеризуются числом циклов попеременного замораживания и оттаивания в насыщенном водой состоянии, которые выдерживает бетон без снижения прочности более чем на 15%; - по водонепроницаемости W2, W4, W6, W8, W10, W12, W14, W16, W18, W20; число — величина давления воды в кгс/см2, при котором еще не наблюдается просачивания ее через испытуемый стандартный образец толщиной 15 см; - по средней плотности от D 200 до D 5000, соответствует среднему значению объемной массы бетона в кг/м3. Для напрягающих бетонов устанавливают марку по самонапряжению. При необходимости устанавливают дополнительные показатели качества бетона, связанные с теплопроводностью, температуростойкостью, огнестойкостью, коррозионной стойкостью (как самого бетона, так и находящейся в нем арматуры), биологической защитой и с другими требованиями, предъявляемыми к конструкции. Виды деформаций. Под деформативностью бетона понимается изменение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой). Бетон является упруго-пластическим материалом, в котором, начиная с малых напряжений, помимо упругих деформаций, появляются и неупругие остаточные или пластические, т. е. полная деформация без учёта усадки равна: eb = ee+epl. В бетоне различают деформации двух основных видов: объёмные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически постоянным вплоть до напряжений . При этом относительная продольная деформация будет , апоперечная деформация . Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида: - при однократном первичном загружении кратковременной нагрузкой; - при длительном действии нагрузки; - при многократном повторном действии нагрузки. Наибольший практический интерес представляют продольные деформации бетона при осевом сжатии. Для изучения деформативности бетона при сжатии используют бетонные призмы с h/a = 4, чтобы исключить влияние на получаемые результаты сил трения, возникающих между опорными гранями образца и плитами пресса. На боковые грани призм в средней их части по высоте устанавливают приборы для замера деформаций (рис. 2.4а) или наклеивают электротензодатчики. Нагрузка к призме прикладывается постепенно по этапам или ступеням (ступень обычно составляет 1/10...1/20 от ожидаемой разрушающей нагрузки). Если деформации на каждой ступени приложения нагрузки замерять дважды: первый раз сразу после приложения нагрузки и второй раз через некоторое время после выдержки под нагрузкой (обычно около 5 минут), то на диаграмме получим ступенчатую линию, изображенную на рис. 1.7б. Деформации, измеренные сразу после приложения нагрузки, упругие и связаны с напряжениями линейным законом, а деформации, развивающиеся за время выдержки под нагрузкой, неупругие и на диаграмме имеют вид горизонтальных площадок. При достаточно большом числе ступеней загружения зависимость между напряжениями и деформациями может изображаться плавной кривой (рис. 2.4б). Рисунок 2.4 – К определению продольных деформаций бетона при сжатии: а - опытный образец (призма) с наклеенными на боковых поверхностях электротензодатчиками; б - диаграмма при приложении нагрузки ступенями; 1 - прямая упругих деформаций, 2 - кривая полных деформаций Деформации бетона при однократном первичном загружении кратковременной нагрузкой. Его длительность обычно не превышает 60 минут. Диаграмма для этого случая показана на рис. 2.5. Степень её криволинейности зависит от продолжительности действия нагрузки, уровня напряжений и класса бетона, т. е. . Полная относительная деформация при однократном загружении бетонной призмы кратковременно приложенной нагрузкой без учёта усадки бетона равна: Рисунок 2.5 – Диаграмма зависимости между напряжениями и деформациями бетона при сжатии и растяжении: I – область упругих деформаций; II – область пластических деформаций; 1 – нагрузка; 2 – разгрузка; – предельная сжимаемость; – предельная растяжимость; – максимальная сжимаемость при нисходящей ветви диаграммы т. е. она состоит из упругой части, равной и неупругой , которая после снятия нагрузки практически не исчезает. Точнее небольшая доля неупругих деформаций (около 10%) в течение некоторого времени после разгрузки исчезает. Эта часть пластической деформации называется деформацией упругого последействия εер. Кроме того, исчезает упругая составляющая пластической деформации εе1 характеризующая обратимое сплющивание пустот цементного камня. Таким образом, после разгрузки бетона окончательно остается остаточная деформация, возникающая из-за необратимого сплющивания пустот цементного камня и излома их стенок εрl1 (рис. 2.5). R2- напряжение в момент, предшествующий началу интенсивного разрушения бетона (условная величина). При невысоких напряжениях ( ) превалируют упругие деформации ( ), а при бетон можно рассматривать как упругий материал. При осевом растяжении диаграмма имеет тот же характер что и при сжатии. Деформации бетона при длительном действии нагрузки. При длительном действии нагрузки (t > 60 минут), даже постоянной, неупругие деформации с течением времени значительно увеличиваются. В реальных же условиях в процессе строительства зданий и сооружений идёт постепенное ступенчатое нагружение элементов. Нарастание неупругих деформаций при длительном действии нагрузки называется ползучестью бетона. Деформации ползучести состоят из двух частей: пластической, протекающей почти одновременно с упругой, и вязкой, для развития которой требуется определённое время. Деформации ползучести развиваются, главным образом, в направлении действия усилий и могут превышать упругие в 3...4 раза. Загруженный в раннем возрасте бетон (при прочих равных условиях) обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Технологические факторы также влияют на ползучесть бетона: с увеличением W/C и расхода цемента на единицу объёма бетонной смеси ползучесть возрастает; с повышением прочности зёрен заполнителя ползучесть уменьшается; с повышением класса бетона ползучесть уменьшается. Бетоны на пористых заполнителях обладают несколько большей ползучестью, чем тяжёлые бетоны. Ползучесть зависит от вида цемента. |