применение локальных компьютерных сетей со смешанной топологией. Костин. Локальные сети. Основные области применения локальных сетей и виды локальных сетей
Скачать 0.98 Mb.
|
ГЛАВА 4. Базовая модель OSI (Open System Interconnection)9 Для того чтобы взаимодействовать, люди используют общий язык. Если они не могут разговаривать друг с другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообщений. Показанные выше стадии необходимы, когда сообщение передается от отправителя к получателю. Для того чтобы привести в движение процесс передачи данных, использовали машины с одинаковым кодированием данных и связанные одна с другой. Для единого представления данных в линиях связи, по которым передается информация, сформирована Международная организация по стандартизации (англ. ISO - International Standards Organization). ISO предназначена для разработки модели международного коммуникационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного пояснения расчленим ее на семь уровней. Международных организация по стандартизации (ISO) разработала базовую модель взаимодействия открытых систем (англ. Open Systems Interconnection (OSI)). Эта модель является международным стандартом для передачи данных. Модель содержит семь отдельных уровней: Уровень 1: физический - битовые протоколы передачи информации; Уровень 2: канальный - формирование кадров, управление доступом к среде; Уровень 3: сетевой - маршрутизация, управление потоками данных; Уровень 4: транспортный - обеспечение взаимодействия удаленных процессов; Уровень 5: сеансовый - поддержка диалога между удаленными процессами; Уровень 6: представлении данных - интерпретация передаваемых данных; Уровень 7: прикладной - пользовательское управление данными. Основная идея этой модели заключается в том, что каждому уровню отводится конкретная ролью в том числе и транспортной среде. Благодаря этому общая задача передачи данных расчленяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного уровня с выше- и нижерасположенными называют протоколом. Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей. С учетом вышеизложенного можно вывести следующую уровневую модель с административными функциями, выполняющимися в пользовательском прикладном уровне. Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень. На приемной стороне поступающие данные анализируются и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень. 4.1. Физический, канальный, сетевой уровни. Уровень 1. Физический. На физическом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физическая связь и неразрывная с ней эксплуатационная готовность являются основной функцией 1-го уровня. Стандарты физического уровня включают рекомендации V.24 МККТТ (CCITT), EIA RS232 и Х.21. Стандарт ISDN ( Integrated Services Digital Network) в будущем сыграет определяющую роль для функций передачи данных. В качестве среды передачи данных используют трехжильный медный провод (экранированная витая пара), коаксиальный кабель, оптоволоконный проводник и радиорелейную линию. Уровень 2. Канальный. Канальный уровень формирует из данных, передаваемых 1-м уровнем, так называемые "кадры" последовательности кадров. На этом уровне осуществляются управление доступом к передающей среде, используемой несколькими ЭВМ, синхронизация, обнаружение и исправление ошибок. Уровень 3. Сетевой. Сетевой уровень устанавливает связь в вычислительной сети между двумя абонентами. Соединение происходит благодаря функциям маршрутизации, которые требуют наличия сетевого адреса в пакете. Сетевой уровень должен также обеспечивать обработку ошибок, мультиплексирование, управление потоками данных. Самый известный стандарт, относящийся к этому уровню, - рекомендация Х.25 МККТТ (для сетей общего пользования с коммутацией пакетов). 4.2. Транспортный, сеансовый, уровень представления данных и прикладной уровень. Уровень 4. Транспортный. Транспортный уровень поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом пользовательскими процессами. Качество транспортировки, безошибочность передачи, независимость вычислительных сетей, сервис транспортировки из конца в конец, минимизация затрат и адресация связи гарантируют непрерывную и безошибочную передачу данных. Уровень 5. Сеансовый. Сеансовый уровень координирует прием, передачу и выдачу одного сеанса связи. Для координации необходимы контроль рабочих параметров, управление потоками данных промежуточных накопителей и диалоговый контроль, гарантирующий передачу, имеющихся в распоряжении данных. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, подсчета платы за пользование ресурсами сети, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Уровень 6. Представления данных. Уровень представления данных предназначен для интерпретации данных; а также подготовки данных для пользовательского прикладного уровня. На этом уровне происходит преобразование данных из кадров, используемых для передачи данных в экранный формат или формат для печатающих устройств оконечной системы. Уровень 7. Прикладной. В прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское прикладное программное обеспечение. Для передачи информации по коммуникационным линиям данные преобразуются в цепочку следующих друг за другом битов (двоичное кодирование с помощью двух состояний:"0" и "1"). Передаваемые алфавитно-цифровые знаки представляются с помощью битовых комбинаций. Битовые комбинации располагают в определенной кодовой таблице, содержащей 4-, 5-, 6-, 7- или 8-битовые коды. Количество представленных знаков в ходе зависит от количества битов, используемых в коде: код из четырех битов может представить максимум 16 значений, 5-битовый код - 32 значения, 6-битовый код - 64 значения, 7-битовый - 128 значений и 8-битовый код - 256 алфавитно-цифровых знаков. При передаче информации между одинаковыми вычислительными системами и различающимися типами компьютеров применяют следующие коды: На международном уровне передача символьной информации осуществляется с помощью 7-битового кодирования, позволяющего закодировать заглавные и строчные буквы английского алфавита, а также некоторые спецсимволы. Национальные и специальные знаки с помощью 7-битово кода представить нельзя. Для представления национальных знаков применяют наиболее употребимый 8-битовый код. Для правильной и, следовательно, полной и безошибочной передачи данных необходимо придерживаться согласованных и установленных правил. Все они оговорены в протоколе передачи данных. Протокол передачи данных требует следующей информации: • Синхронизация Под синхронизацией понимают механизм распознавания начала блока данных и его конца. • Инициализация Под инициализацией понимают установление соединения между взаимодействующими партнерами. • Блокирование Под блокированием понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опознавательные знаки начала блока и его конца). • Адресация Адресация обеспечивает идентификацию различного используемого оборудования данных, которое обменивается друг с другом информацией во время взаимодействия. • Обнаружение ошибок Под обнаружением ошибок понимают установку битов четности и, следовательно, вычисление контрольных битов. • Нумерация блоков Текущая нумерация блоков позволяет установить ошибочно передаваемую или потерявшуюся информацию. • Управление потоком данных Управление потоком данных служит для распределения и синхронизации информационных потоков. Так, например, если не хватает места в буфере устройства данных или данные не достаточно быстро обрабатываются в периферийных устройствах (например, принтерах), сообщения и / или запросы накапливаются. • Методы восстановления После прерывания процесса передачи данных используют методы восстановления, чтобы вернуться к определенному положению для повторной передачи информации. • Разрешение доступа Распределение, контроль и управление ограничениями доступа к данным вменяются в обязанность пункта разрешения доступа (например, "только передача" или "только прием" ) Заключение. По данной дипломной работе приводятся следующие выводы: Применение локальных компьютерных сетей со смешанной топологией часто применяется при построении крупных сетей. Совместное функционирование многих компьютеров в системе одного учреждения помогает оптимально распределить вычислительные мощности и оптимизировать их работу. Основные сетевые средства коммуникаций для ЛКС со смешанной топологией: Витая пара Коаксиальный кабель Широкополосный коаксиальный кабель Еthernet-кабель Сheapernеt-кабель Оптоволоконные линии Основные преимущества, получаемые при объединении персональных компьютеров в вычислительной сети: Разделение ресурсов Разделение данных Разделение программных средств Разделение ресурсов процессора Многопользовательский режим Локальные сети со смешанной топологией применяют на таких крупных объектах как объекты «КазТрансОйл», «КазТрансГаз» и т.д. Список литературы. Веттинг Д. «Nowell NetWare для пользователя» Казаков С.И. «Основы сетевых технологий» Голованов Б.Г. «Введение в программирование в сетях Nowell NetWare» Олифер Н., Олифер В.. «Базовые технологии локальных сетей» Каган Б. М.. «Электронные вычислительные машины и системы» Курс «Cisco Intеrnetworking technology overview». Олифер Н., Олифер В.. «Высокоскоростные технологии ЛВС». Спирин А. А. «Введение в технику волоконно-оптических сетей». Стэн Шатт. «Мир компьютерных систем». - К: BHV, 1996 Фролов А. В., Фролов В. Г. «Локальные сети персональных компьютеров». «Монтаж сети, установка программного обеспечения». - М.: Диалог-МИФИ, 1995г. Бертсекас З, Галлагер «Сети передачи данных» Гусева А.И. «Работа в локальных сетях NetWare 3.12-4.1».- Учебник. – М.:Диалог – МИФИ, 1996 г. Джон Д.Рули, Дэвид Мэсвин, Томас Хендерсон, Мартин Хеллер. «Сети Windows NT 4.0». – BHV – Киев, 1997 г. Гук Михаил. «Сети NetWare 3,12-4.1 книга ответов». – СП: Питер, 1996 г. Нанс Б. «Компьютерные сети». – М.: БИНОМ, 1996 г. Рули Джон Д. «Сети Windows NT 4.00: рабочая станция и сервер» – ВНV – Киев, 1997 г. Хант К. Серия «Для специалиста»: Персональные компьютеры в сетях TCP/IP. – BHV – Киев, 1997 г. Фигурнов В.Э. «IBM PC для пользователя - краткий курс». – М. Инфра М, 1998 г. ПетроченковА. В.. «Персональный компьютер – просто и ясно!». Смоленск, 1997 г. Энциклопедический словарь «ЭЛЕКТРОНИКА». Москва, 1991г. Крейнак Джой «Энциклопедия Интернет». Санкт-Петербург, 2000 г. Симонович С., Евсеев Г., Алексеев А. «Общая Информатика». Москва, 1999 г. Хорошевский В. Г. «Архитектура вычислительных систем». Москва, 2005 г. Варфоломеев В. А., Лецкий Э. К., Шамров М. И., Яковлев В. В. «Архитектура и технологии IBM eServer zSeries. Учебное пособие». Москва, 2005 г. Стахнов А. «Linux – сервер в Windows окружении». Санкт-Петербург, 2005 г. Самойленко В. «Локальные сети, полное руководство». Москва, 2002 г. Приложение. Экономико-организационный раздел. Материальные затраты. Все аппаратное обеспечение будет закупаться в одной фирме. Это решение продиктовано двумя причинами. Во-первых удобно приобретать и обслуживать всю технику в одной компании. Во-вторых, качественное сервисное обслуживание и невысокие цены на компьютерном рынке г. Атырау способствовали выбору именно такой компьютерной компании. Затраты на покупку всего аппаратного обеспечение можно разделить на три группы: Затраты на сервер; Затраты на рабочие станции; Затраты на сетевое оборудование. Затраты на сервер. За основу сервера была выбрана базовая конфигурация, предложенная фирмой – продавцом, в которую были внесены изменения, отраженные в таблице.
Затраты на рабочие станции. Всего будет закуплено три рабочие станции одинаковой конфигурации. Расчет их стоимости приведен в таблице 2.
Затраты на сетевое оборудование. Стоимость сетевого оборудования зависит от топологии локальной сети, так как в данном случае применяется локальная компьютерная сеть со смешанной топологией затраты на оборудования будут следующими:
Итог: 2861 у.е. 1 Н. Олифер, В. Олифер. «Базовые технологии локальных сетей» 2 Стэн Шатт. «Мир компьютерных систем». - К: BHV, 1996 3 Энциклопедический словарь «ЭЛЕКТРОНИКА». г. Москва, 1991г. 4 Н. Олифер, В. Олифер. «Высокоскоростные технологии ЛВС». 5 Фролов А. В., Фролов В. Г. «Локальные сети персональных компьютеров». «Монтаж сети, установка программного обеспечения». - М.: Диалог-МИФИ, 1995г. 6 Самойленко В. «Локальные сети, полное руководство». Москва, 2002 г. 7 Симонович С., Евсеев Г., Алексеев А. «Общая Информатика». Москва, 1999 г. 8 Д.Веттинг «Nowell NetWare для пользователя» 9 С.И.Казаков «Основы сетевых технологий» |