Причины девиантного поведения, его основные формы и способы предотвращения. Макроэкономика ii курс лекций
Скачать 1.08 Mb.
|
3.3. Анализ экономической политики с использованием эффективной рыночной классификации МанделлаИная интерпретация проблемы выбора экономической политики была предложена Робертом Манделлом. Исходя из наблюдений за реальной экономической политикой он предположил, что различные инструменты экономической политики находятся под контролем различных органов государственного управления. Например, монетарная политика находится под контролем центрального банка, а фискальная – под контролем правительства страны. Органы управления в модели Манделла действуют не скоординированным образом, т.е. децентрализовано. Р. Манделл показал, что если инструменты экономической политики правильно приписаны к органам управления, то оптимальное значение целей экономической политики может быть достигнуто в условиях, когда решения принимаются децентрализовано. Концепция эффективной рыночной классификации, предложенная Р. Манделлом, исходит из того, что каждая цель экономической политики должна быть приписана к тому инструменту (и, соответственно, к органу государственного управления), который оказывает на нее большее воздействие и имеет преимущество перед другими мерами воздействия на данный показатель с точки зрения его регулирования. Например, изменение денежной массы M, осуществляемое центральным банком, оказывает большее воздействие на изменение инфляции π по сравнению с инструментами фискальной политики. Математически это означает, что в системе уравнений (3.13), (3.14) отношение и b2/ a2 больше, чем отношение b1/ a1. Следовательно, органы, отвечающие за кредитно - денежную политику (прежде всего, центральный банк) должны управлять инфляционными процессами, а органы, под контролем которых находится фискальная политика, отвечают за изменение динамики ВВП. В случае такого распределения обязанностей между органами управления государством инструменты M и G будут стремиться к своему оптимальному значению. Наоборот, при попытке правительства регулировать инфляцию, а центрального банка – динамику ВВП, невозможно получить процесс, сходящийся к оптимальным значениям инструментов экономической политики. В реальной экономической жизни встречаются ситуации, когда инструментов, которыми располагают органы управления, меньше, чем целевых показателей. В этом случае невозможно достижение оптимальных значений всех показателей и возникает проблема минимизации потерь, связанных с не оптимальностью значений инструментов. Представим ситуацию, когда использование государственных затрат как инструмента макроэкономического регулированию на какой – то момент времени невозможно. Например, это может быть в случае, когда дальнейший их рост приведет к недопустимому дефициту государственного бюджета. Следовательно, изменение государственных затрат должно быть нулевым (ΔG = 0). В терминах модели (3.13) – (3.14) это означает, что существует лишь один реальный инструмент воздействия на экономическую систему – изменение денежной массы. С учетом того, что ΔG = 0, уравнения (3.13) – (3.14) в терминах приростов могут быть записаны следующим образом. ΔY= a2 * ΔM (3.19) Δπ= b2 * ΔM (3.20) Из (3.19) следует, что ΔM = ΔY/ a2. Подставив это значение ΔM в уравнение (3.20), получим следующее соотношение. Δπ= (b2/ a2)* ΔY (3.21) Из соотношения (3.21) следует, что при неизменных a2 и b2 невозможно уменьшить инфляцию без сокращения ВВП. Как это уже отмечалось выше, в условиях меньшего по сравнению с целями числа инструментов перед правительством встает вопрос о минимизации обществом потерь, связанных с тем, что целевые показатели не достигнут своих оптимальных значений. В связи с этим в анализ вводится функция социальных потерь, которая может быть сформулирована следующим образом. L = (ΔY – ΔY*)2 + (Δπ – Δπ*)2, (3.22) где ΔY*, Δπ* - оптимальные значения изменения ВВП и инфляции. Возведение в квадрат разницы между фактическим и оптимальным значением изменения целевых показателей является стандартным приемом, позволяющим избежать взаимного “поглощения” отклонений с различными знаками. Например, может иметь место ситуация, когда (ΔY – ΔY*)<0, а (Δπ – Δπ*)>0 и сумма этих показателей может быть существенно ниже, чем каждое слагаемое в отдельности. В более общем виде функция социальных потерь может быть описана следующим образом. L = (ΔY – ΔY*)2 + α*(Δπ – Δπ*)2, (3.23) где α>0 – весовой коэффициент, который показывает, достижение какой цели является более приоритетным для правительства. Например, при α>1 более важным является достижение цели по снижению инфляции. При α<1 – более приоритетна цель по изменению ВВП. Для приведенного в пункте 3.2 примера функция социальных потерь будет иметь следующий вид. L = (ΔY)2 + α*(Δπ + 4)2, (3.24) Пусть L = L02. Тогда при предположении о том, что α = 1, уравнение (3.24) будет иметь вид. L02 = (ΔY)2 + (Δπ + 4)2, (3.25) Точкой блаженства, в которой социальные потери равны нулю, будет точка с координатами ΔY = 0 и Δπ = -4. Дадим геометрическую интерпретацию функции социальных потерь. Кривая безразличия функции социальных потерь L02 представляет собой окружность радиуса L0 с центром в точке блаженства A с координатами (-4, 0) (см. График 3.1). В случае больших потерь L12> L02 кривая безразличия представляет собой большую окружность c тем же центром и с радиусом L1. Δπ -ΔYB -ΔYA T ΔY B L02 L12 -4 A График 3.1. Функция социальных потерь в системе координат (Δπ, ΔY) представляет собой кривую безразличия с некоторым радиусом Ln. Линия T на Графике 3.1 представляет собой графическое изображение функции, описываемой уравнением (3.21). Она показывает то реальное ограничение, с которым сталкивается правительство при реализации своих попыток снизить инфляцию. Поскольку идеальной точкой для органов управления экономикой является точка блаженства, постольку целью правительства является максимальное приближение к ней. Очевидно, что такое максимальное приближение будет иметь место в точке касания кривой безразличия L02 и линии T. На Графике 3.1 это точка B. В данном примере L02 является ближайшей к точке блаженства А кривой безразличия, касающейся линии Т. В точке B достигается компромисс. Инфляция заметно снижается, хотя и не на оптимальную величину. Одновременно на незначительную величину -ΔYB уменьшается ВВП, что является своеобразной «платой» общества за уменьшение темпов роста цен. В случае достижения нулевой инфляции эта плата была бы слишком велика, так как ВВП снизился бы на значительно большую величину -ΔYA. 1> |