Главная страница

Математическое описание метода. 1 Общие сведения о системах массового обслуживания


Скачать 7.32 Mb.
НазваниеМатематическое описание метода. 1 Общие сведения о системах массового обслуживания
Дата16.03.2023
Размер7.32 Mb.
Формат файлаrtf
Имя файлаbibliofond.ru_785515.rtf
ТипРеферат
#993628
страница2 из 4
1   2   3   4

1.2 Многоканальные СМО с отказами



Система M/M/n/0 представляет собой n- линейную СМО с r местами ожидания (r=0), в которую поступает пуассоновский поток интенсивности , а времена обслуживания заявок независимы и при этом время обслуживания каждой заявки на любом приборе распределено по экспоненциальному закону с параметром . В случае, когда , заявка, поступившая в переполненную систему (т.е. когда заняты все приборы и все места ожидания), теряется и вновь в нее не возвращаются. Система M/M/n/r также относится к экспоненциальным СМО.

Уравнения, описывающие распределение заявок в системе

Рассматривая -число заявок в системе в момент t, нетрудно показать, что процесс является однородным Марковским процессом с множеством состояний . Ниже мы покажем, что процесс представляет собой ПРГ.

Выпишем систему дифференциальных уравнений Колмогорова. Для этого рассмотрим моменты t и . Предполагая, что в момент t процесс v(t) пребывает в состоянии i, определим, куда он может попасть в момент , и найдем вероятности его переходов за время . Здесь возможны три случая.

А. i процесс не выйдет из состояния i равна произведению вероятности не поступления заявки за время на вероятность того, что за это время не обслужится ни одна из i заявок, т.е. равна . Вероятность перехода за время в состояние i+1 равна - вероятности поступления заявки в систему. Наконец поскольку каждый прибор закончит за время обслуживание находящейся в нем заявки с вероятностью , а таких приборов i, то вероятность перехода в состояние i-1 равна . Остальные переходы имеют вероятность .

Б. n≤i остаться в состоянии i равна , перейти в состояние i-1 за это же время

Таким образом, мы фактически доказали, что процесс является процессом рождения и гибели с интенсивностями при при и при . Обозначая через , распределение числа заявок в системе в момент t, получаем следующие выражения для в случае, когда :
,

,

,


Если же , то, что очевидно последнего выражения не будет, а в предпоследнем индекс i может принимать значения i=n,n+1,… .

Вычитая теперь из обеих частей равенства, деля на и переходя к пределу

при , получаем систему дифференциальных уравнений:
,

,

, (1.2)

.
Стационарное распределение очереди

В случае конечного r, например r=0, процесс является эргодическим. Также он будет эргодическим в случае при выполнении условия, о котором будет сказано ниже. Тогда из (1) при получаем, что стационарные вероятности состояний pi удовлетворяют систему уравнений:
,

, (1.3)

,

.
Поясним теперь вывод системы уравнений (1.3), исходя из принципа глобального баланса. Так, например, согласно диаграмме переходов для фиксированного состояния i, , имеем, что суммарные потоки вероятностей входящий в состояние i и выходящий из него равны, соответственно, и .


Рисунок 1 Диаграмма переходов
Исходя теперь из принципа локального баланса, что баланс потоков вероятностей между состояниями i и i+1 отражается равенствами :
,

, (1.4)
являющимися уравнениями локального баланса для данной СМО. Проверка справедливости равенств (1.4) производится непосредственным суммированием системы уравнений (1.3) по i при i=0,1,…,n+r-1.

Из соотношения (1.4), выражая рекуррентно вероятности через ,


где , а определяется из условия нормировки , т.е.
. (1.6)
Ясно, что формулы можно получить из общих соотношений для стационарных вероятностей состояний процесса рождения и гибели при указанных выше значениях и .

Если , то стационарный режим существует при любом .

Выпишем теперь выражения для некоторых характеристик очереди.

Стационарная вероятность немедленного обслуживания заявки (обслуживания без ожидания) совпадает со стационарной вероятностью того, что в системе находится 0,1,…,n-1 заявок, т.е.

Рассмотрим интересующий нас частный случай, когда r=0. тогда в системе отсутствуют места для ожидания (система с потерями M/M/n/0) и такая система носит название системы Эрланга. Система Эрланга описывает процессы, происходящие в простейших телефонных сетях, и названа так в честь А. К. Эрланга, впервые её исследовавшего. Для системы M/M/n/0 стационарные вероятности определяются формулой Эрланга
, .

Следовательно, стационарная вероятность потери заявки определяется формулой:
,
которую также называют формулой Эрланга.

Наконец, когда , то мы имеем систему , для которой при любом стационарные вероятности существуют и, как следует из формул Эрланга при , имеют вид
, .
Вернемся теперь к соотношениям (1.4). Суммируя эти равенства по i=0,1,…,n+r-1 , получаем
,
где - среднее число занятых приборов. Выписанное соотношение выражает равенство интенсивностей принятого в систему и обслуживаемого ею потоков в стационарном режиме. Отсюда мы можем получить выражение для пропускной способности системы , определяемой как среднее число заявок, обслуженных системой в единицу времени, и называемой иногда интенсивностью выхода:
.
Выражение для стационарного числа N заявок в системе нетрудно получить либо непосредственно из распределения вероятностей (4), либо воспользовавшись очевидным соотношением .

Стационарное распределение времени пребывания заявки в системе

Стационарное распределение W(x) времени ожидания начала обслуживания принятой в систему M/M/n/r заявки вычисляется практически так же, как и для системы . Заметим, что заявка, заставшая при поступлении i других заявок в системе, немедленно начинает обслуживаться, если i времена.

Путем несложных преобразований находим, учитывая независимость времени обслуживания от времени ожидания начала обслуживания, находим, что стационарное распределение V(x) времени пребывания в системе принятой к обслуживанию заявки имеет ПЛС
.
Стационарные средние времена ожидания начала обслуживания и пребывания заявки в системе задаются формулами:
,

.
Последнее выражение можно также получить из формул Литтла.

Нестационарные характеристики

Нестационарное распределение числа заявок в системе получается интегрированием системы (1) с учетом начального распределения .

Если , то система (1) представляет собой линейную однородную систему обыкновенных дифференциальных уравнений первого порядка с постоянными коэффициентами.

Выходящий поток

В системе , в установившемся режиме поток заявок, покидающих систему, является пуассоновским. То же самое можно сказать и о выходящем потоке из системы M/M/n/r, если понимать под ним суммарный поток как обслуженных, так и потерянных заявок. Доказательство этого с помощью метода обращения времени полностью совпадает с доказательством аналогичного факта для системы .
1   2   3   4


написать администратору сайта