Главная страница

Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики


Скачать 9.74 Mb.
НазваниеМеханика. Акустика глава 4 Некоторые вопросы биомеханики
АнкорБиофиз.РЕМИЗОВ.doc
Дата08.12.2017
Размер9.74 Mb.
Формат файлаdoc
Имя файлаБиофиз.РЕМИЗОВ.doc
ТипДокументы
#10792
страница37 из 41
1   ...   33   34   35   36   37   38   39   40   41

втором законе фотохимии4, сформулирован­ном Штарком и Эйнштейном: каждая молекула, участвующая в химической реакции, идущей под действием света, поглощает один квант излучения, который вызывает реакцию. Однофотонность поглощения, описываемая вторым законом, выполняется потому, что при обычных интенсивностях света практически не­возможно одновременное попадание в молекулу, находящуюся в основном состоянии, двух фотонов. Если бы такое событие осу­ществилось, то выражение (23.31) приобрело бы вид:

что означало бы суммирование энергии двух фотонов для перехо­да молекулы из энергетического состояния Екв состояние с энер­гией Et. He происходит также поглощения фотонов электронно-воз­бужденными молекулами, так как их время жизни мало, а обычно используемые интенсивности облучения невелики.

Поэтому кон­центрация электронно-возбужденных молекул низка, и поглоще­ние ими еще одного фотона чрезвычайно маловероятно.

Однако если увеличить интенсивность света, то становится воз­можным двухфотонное поглощение. Например, облучение рас­творов ДНК высокоинтенсивным импульсным лазерным излуче­нием с длиной волны около 266 нм приводило к ионизации мо­лекул ДНК, подобной вызываемой у-излучением. Воздействие ультрафиолета с низкой интенсивностью ионизации не вызывало. Установлено, что при облучении водных растворов нуклеиновых кислот или их оснований пикосекундными (длительность импуль­са 30 пс) или наносекундными (10 нс) импульсами с интенсивностями выше 106 Вт/см2 приводило к электронным переходам, пока­занным на рис. 24.19, завершавшимся ионизацией молекул.

При пикосекундных импульсах (рис. 24.19, а) заселение высоких электронных уровней происходило по схеме

а при наносекундных (рис. 24.19, б) — по схеме
В обоих случаях молекулы получали энергию, превышающую энергию ионизации.

Полоса поглощения ДНК располагается в ультрафиолетовой области спектра при l < 315 нм, видимый свет нуклеиновые кис­лоты совсем не поглощают. Однако воздействие высокоинтенсив­ным лазерным излучением около 532 нм переводит ДНК в элек­тронно-возбужденное состояние за счет суммирования энергии двух фотонов (рис. 24.20).

Поглощение любого излучения приводит к выделению некото­рого количества энергии в виде тепла, которое рассеивается от воз­бужденных молекул в окружающее пространство. Инфракрасное излучение поглощается главным образом водой и вызывает в ос­новном тепловые эффекты. Поэтому излучение высокоинтенсив­ных инфракрасных лазеров вызывает заметное немедленное теп­ловое действие на ткани. Под тепловым воздействием лазерного излучения в медицине понимают в основном испарение (резание) и коагуляцию биотканей. Это касается различных лазеров с интен­сивностью от 1 до 107 Вт/см2 и с продолжительностью облучения от миллисекунд до нескольких секунд. К ним относятся, напри­мер, газовый СО2-лазер (с длиной волны 10,6 мкм), Nd:YAG-лазер (1,064 мкм) и другие. Nd:YAG-лaзep — наиболее широко исполь­зуемый твердотельный четырехуровневый лазер. Генерация осу­ществляется на переходах ионов неодима (Nd3+), введенных в кристаллы Y3A15O12 иттрий-алюминиевого граната (YAG).

Наряду с нагревом ткани происходит отвод части тепла за счет теплопроводности и тока крови. При температурах ниже 40 °С необратимые повреждения не наблюда­ются. При температурах 60 °С и выше начинается денатурация белков, ко­агуляция тканей и некроз. При 100— 150 °С вызывается обезвоживание и обугливание, а при температурах свы­ше 300 °С ткань испаряется.
Когда излучение исходит от высоко­интенсивного сфокусированного лазе­ра, количество выделяющегося тепла велико, в ткани возникает температур­ный градиент. В месте падения луча ткань испаряется, в прилегающих областях происходит обуглива­ние и коагуляция (рис. 24.21). Фотоиспарение является способом послойного удаления или разрезания ткани. В результате коагуля­ции завариваются сосуды и останавливается кровотечение. Так сфокусированным лучом непрерывного СО2-лазера (l = 10,6 мкм) с мощностью около 2 • 103 Вт/см2 пользуются как хирургическим скальпелем для разрезания биологических тканей.

Если уменьшать длительность воздействия (10-9—10-6 с) и уве­личивать интенсивность (выше 106 Вт/см2), то размеры зон обуг­ливания и коагуляции становятся пренебрежимо малыми. Такой процесс называют фотоабляцией (фотоудалением) и используют для послойного удаления ткани. Фотоабляция возникает при плотностях энергии 0,01—100 Дж/см2.

При дальнейшем повышении интенсивности (1011 Вт/см2 и вы­ше) возможен еще один процесс — «оптический пробой». Это яв­ление заключается в том, что из-за очень высокой напряженности электрического поля лазерного излучения (сравнимой с напря­женностью внутриатомных электрических полей) материя иони­зуется, образуется плазма и генерируются механические ударные волны. Для оптического пробоя не требуется поглощения квантов света веществом в обычном смысле, он наблюдается также в проз­рачных средах, например в воздухе.

 

 

1 В 1964 г. Н. Г. Басову, А. М. Прохорову и Ч. Таунсу за эти работы
была присуждена Нобелевская премия.

  1. 2     Название «лазер» является аббревиатурой от англ. Light Amplifica­
    tion by Stimulated Emission of Radiation (усиление света посредством вы­
    нужденного излучения).

  2. 3     На этой редуцированной схеме представлены только те уровни и пе­реходы между ними, которые существенны для генерации лазерного из­лучения. На самом деле схема электронных уровней гораздо сложнее. На схеме не отражена ширина энергетических уровней. Так, короткоживу-щий уровень 3 является широким и поглощает большую часть спектра излучения лампы накачки.

4 Фотохимия изучает химические реакции, протекающие под дейст­вием света.

 

 

§ 24.9. Фотобиологические процессы. Понятия о фотобиологии и фотомедицине

Фотобиологическими называют процессы, которые начина­ются с поглощения квантов света молекулами, а заканчива­ются физиологической реакцией организма.

К фотобиологическим процессам относятся фотосинтез, зре­ние, загар и эритема кожи, фотопериодизм и многие другие.

Условно всякий фотобиологический процесс можно разбить на несколько стадий:

  1. 1)  поглощение кванта света молекулой;

  2. 2)  внутримолекулярные процессы размена энергии;

  3. 3)  межмолекулярные процессы переноса энергии электрон­но-возбужденного состояния (важны в некоторых фотобиологических процессах);

  4. 4)  первичный фотохимический акт, сопровождающийся образованием короткоживущих, нестабильных фотопродуктов, в него молекула вступает из нижнего синглетного S1 или триплетного Т1 возбужденных состояний;

  5. 5)  реакции нестабильных фотопродуктов, заканчивающиеся образованием стабильных продуктов;

  6. 6)  биохимические реакции с участием фотопродуктов;

  7. 7)  физиологический ответ на действие света.

Первые три стадии фотобиологических процессов одинаковы для фотохимических реакций и фотолюминесценции. Поэтому законы фотохимии имеют свои аналогии с законами люминесцен­ции (см. § 24.6). Первичный фотохимический акт заключается в
химических изменениях молекулы (например, присоединении или отдаче электрона или водорода).

Особенностью биологического действия ультрафиолетового и видимого излучения (200—750 нм)1 является ярко выраженная зависимость биологического эффекта от длины волны излучения. Бактерицидные эффекты вызываются волнами в диапазоне 200— 315 нм, покраснение (эритема) кожи наиболее эффективно вызы­вается излучением с длиной волн 280—315 нм, зрительный эф­фект — 400—750 нм (видимый диапазон), лечение желтухи ново­рожденных — фиолетовым светом (около 400 нм). При фотосинте­зе растения и фотосинтезирующие бактерии используют весь диапазон солнечного ультрафиолетового излучения, достигающего поверхности Земли (коротковолновая граница солнечного света, проходящего через атмосферу Земли,

285 нм), видимого света, и даже ближнего инфракрасного излучения (иногда до 1000 нм).

Ме­няя длину волны, можно избирательно инициировать те или иные фотобиологические процессы2. Дело в том, что разные фотобиоло­гические процессы начинаются с поглощения квантов света раз­ными молекулами, в свою очередь положение полосы поглощения молекулы зависит от ее химической структуры (см. § 24.4).

Важной характеристикой воздействия света на биологические объекты является спектр фотобиологического действия за­висимость биологического эффекта от длины волны дейст­вующего света. Спектры действия позволяют определить, какая область спектра наиболее эффективно вызывает биологический процесс, а также определить природу молекул, ответственных за поглощение света в данном процессе.

Рассмотрим количественно начальные этапы этого процесса: поглощение света и первичную фотохимическую реакцию.

По аналогии с рассуждениями § 24.1, введем понятие эффектив­ного сечения поглощения молекулой фотона s. Отличие от вывода закона Бугера—Ламберта—Бера заключается, по крайней мере, в следующем: во-первых, будем учитывать уменьшение числа акти­вируемых молекул, так как воздействие света вызывает их хими­ческие превращения; во-вторых, рассмотрим достаточно тонкий слой разбавленного раствора, это позволит считать интенсивность света I0постоянной и одинаковой по всей толщине слоя раствора.

Элементарное уменьшение концентрации dn молекул под дей­ствием света пропорционально:

  • — концентрации п молекул;

  • — эффективному сечению поглощения s;

  • — времени облучения dt;

  • — интенсивности света 103:



Здесь знак «-» означает уменьшение числа молекул со временем.

Коэффициент (jхназывают квантовым выходом фотохимической реакции. Этот коэффициент показывает, какая часть молекул, которые поглотили фотоны, вступила в фотохимическую реак­цию. Разделим переменные и проинтегрируем (24.27):

где п0— начальная концентрация молекул, ani— концентрация молекул в момент i. Получаем

или

Здесь Iot= Do6доза облучения, a sjx= sх— эффективное се­чение молекулы для фотохимического превращения, оно пропор­ционально вероятности такого взаимодействия фотона с молеку­лой, в результате которого произойдет фотохимическая реакция.

Для нахождения sхстроят график зависимости ln n0/ni = f(Do6) и

по наклону прямой [см. (24.28)] определяют эту величину (рис. 24.22, б). Можно найти sхнепосредственно на дозовой кривой фо­толиза4 вещества (рис. 24.22, а)

где Do6.37% — доза облучения, при которой концентрация вещест­ва уменьшилась в е раз, другими словами, осталось неразрушен­ными 37% молекул.

 

В фотохимии спектром действия называют зависимость sх(l). Эту зависимость можно найти, используя связь sх = sjx. Дело в том, что квантовый выход фотохимических реакций (подобно квантовому выходу флуоресценции, см. § 24.6) в растворах не за­висит от длины волны действующего света, т. е. jх(l) = const. Фи­зически это означает, что независимо от энергии возбуждения hvмолекула сначала израсходует часть этой энергии, пока не перей­дет в нижнее возбужденное состояние (см. § 24.6 и рис. 23.16), и только после этого сможет начать фотохимическое превращение. Учитывая это, можно заключить, что спектр действия jх(l) и спектр поглощения (см. § 24.4) — зависимость s(l) — имеют оди­наковый вид, так как различаются только постоянным множите­лем jх. Такая особенность позволяет, сопоставляя спектр дейст­вия фотохимической реакции со спектрами поглощения содержа­щихся в объекте соединений, определить, какое из них поглощает фотоны, вызывающие фотохимические превращения.

Описанная методика определения спектров действия может быть применена к исследованию бактерицидного действия света. Сходство процессов при фотолизе молекул в растворе и при фото­инактивации бактерий в суспензии заключается в следующем. Под действием поглощенного кванта молекула либо совсем не из­менится, либо превратится в фотопродукт, т. е. возможны только два исхода, причем вероятность фотолиза определяется кванто­вым выходом jх. Точно так же при поглощении кванта бактерией она либо останется живой, либо погибнет. Концентрацию жизне­способных бактерий можно определить подобно концентрации не­разрушенных молекул в растворе. Вероятность гибели бактерии при поглощении кванта определяется квантовым выходом бакте­рицидного эффекта и (так же как при фотолизе молекул) не зави­сит от длины волны действующего света. Поэтому если в формулы (24.27)—(24.29) вместо концентрации молекул подставить кон­центрацию бактерий, то можно найти охдля бактерицидного эф­фекта и построить спектр действия. Так, например, было установ­лено, что кривая гибели бактерий под действием УФ-излучения (спектр фотобиологического действия) подобна спектру поглоще­ния нуклеиновых кислот, представляющему широкую неструкту­рированную полосу в диапазоне длин волн 200—315 нм с макси­мумом при 260 нм. Это дало основание сделать вывод, что гибель бактерий обусловлена повреждением именно нуклеиновых кис­лот. На этом основано использование в медицине для обеззараживания помещений ртутных бактерицидных ламп, излучающих монохроматический свет с длиной волны 254 нм, что соответству­ет максимуму спектра действия бактерицидного эффекта.

Сложнее дело обстоит в случае таких процессов, как эритема кожи. Эритема заключается в расширении кровеносных сосудов кожи, что видно по ее покраснению. Зависимость степени покрас­нения от дозы характеризуется наличием пороговой дозы (мини­мальной эритемной дозы, МЭД), вызывающей едва различимое глазом покраснение. Подпороговые дозы эритему не вызывают совсем. При увеличении дозы облучения степень покраснения растет пропорционально логарифму дозы. Здесь отсутствуют ко­личественные показатели, подобные числу разрушенных молекул или погибших клеток, которые можно было бы использовать для расчета sх. Выход из положения был найден при введении сле­дующего предположения. Если облучать кожу разными длинами волн и при этом подбирать каждый раз дозу так, чтобы возникаю­щий эффект (степень покраснения) был одинаков, то можно ду­мать, что одинаковая степень покраснения (стандартный эффект) является результатом одинаковых фотохимических поврежде­ний. В качестве стандартного эффекта обычно выбирают мини­мальное покраснение, вызываемое МЭД. Величина МЭД являет­ся функцией длины волны действующего света. По аналогии с (24.29) было предложено определять величину эритемной эффек­тивности как 1/МЭД. Предполагается, что 1/МЭД пропорци­ональна sх, подобно 1/-Do6;37% из выражения (24.29). Спектры действия эритемы представлены на рис. 24.23, кривая 1измере­на через 8 часов после облучения, 2 — через 24 часа и 3 — че­рез 10 суток. Выяснилось, что динамика развития, длительность существования и степень покраснения кожи сильно зависят от длины волны действующего света.
На этом основании в медицине весь диа­пазон УФ-излучения принято подраз­делять на три области: УФ-А (320— 400 нм), УФ-В (280—320 нм) и УФ-С (l < 280 нм). УФ-А-излучение наиме­нее эффективно. УФ-В-излучение способно вызывать наиболее интен­сивную и длительную эритему, пере­ходящую при дозах более 10 МЭД в эдему (ожог кожи). УФ-С-излучение может вызвать только умеренное по­краснение, ни при каких дозах не

переходящее в эдему. Регистрация спектров действия эритемы по­катала, что данная реакция кожи является следствием суммиро­вания двух или трех фотохимических процессов, каждый из которых по-разному зависит от длины волны действующего света. В случае других сложных фотобиологических процессов мож­но для регистрации спектров действия использовать величину биологической эффективности света (БЭС), обратную дозе облу­чения, вызывающей стандартный биологический эффект Do6ст

Изучение спектров действия показало, что УФ-В-излучение наиболее эффективно вызывает не только эритему, но также пиг­ментацию и рак кожи, кроме того, оно подавляет Т-клеточное зве­но иммунитета и вызывает многие другие эффекты у человека и животных. Отсюда понятно внимание, уделяемое состоянию озо­нового слоя атмосферы. Озон является естественным светофильт­ром, определяющим коротковолновую границу солнечного излу­чения, достигающего поверхности Земли. В ясный полдень на эк­ваторе на высоте моря коротковолновая граница проходит вблизи 285 нм. Суммарно УФ-В-излучение составляет менее 1,5% энер­гии солнечного света, но обусловливает наиболее острые фотоби­ологические эффекты. Уменьшение озонового слоя резко увели­чивает количество УФ-В-излучения, что крайне опасно для жи­вых организмов.

Сопоставление спектров действия со спектрами поглощения содержащихся в биологическом объекте молекул позволяет опре­делить, какие молекулы поглощают фотоны, запускающие иссле­дуемый фотобиологический процесс. Такие фотобиологические процессы, как зрительный эффект, фотомутагенез, фотоканцеро­генез, эритема и др., индуцируются под действием света, погло­щаемого нормально содержащимися в объекте молекулами, на­пример, зрительными пигментами, нуклеиновыми кислотами, белками и др. В некоторых случаях наблюдается резкое повыше­ние светочувствительности биологических систем в результате попадания в них экзогенных (посторонних) молекул, способных поглощать ультрафиолет или видимый свет. Вещества, повышаю­щие чувствительность биообъектов к свету, называют фотосенси­билизаторами, а инициируемые ими фотобиологические процес­сы — фотосенсибилизированными. Форма спектра действия тако­го процесса совпадает со спектром поглощения соответствующего фотосенсибилизатора.

Определение вида молекул, поглотивших свет, существенно потому, что свойства электронно-возбужденных молекул сильно отличаются от свойств тех же молекул в основном (невозбужден­ном) состоянии. Благодаря такому изменению свойств молекул и инициируются фотобиологические процессы.

Молекула (М) обязательно избавляется от избыточной энергии, расходуя ее либо в физических процессах, либо в фотохимических реакциях. Основные пути расходования энергии возбужденных мо­лекул (М*) показаны на рис. 24.24. Может произойти безызлуча-тельный переход энергии в тепло, либо излучение квантов люми­несценции с возвращением молекулы в основное состояние (§ 24.6).

Все многообразие фотохимических реакций электронно-воз­бужденных молекул сводится к фотоизомеризации или переносу электрона между возбужденной молекулой и субстратом.

Фотоизомеризация это изменение пространственной структуры молекул, осуществляющееся в электронно-возбуж­денном состоянии. Известно, что у органических молекул, нахо­дящихся в основном состоянии, невозможно вращение их частей вокруг двойных связей. Такие молекулы имеют плоскую цис- или торакс-конфигурацию (рис. 24.25). Это связано с особенностями перекрывания p-орбиталей при образова­нии второй связи (см. рис. 23.15, б). Для того чтобы повернуть две части молекулы вокруг двойной связи, нуж­но уменьшить области перекрывания p-орбиталей, для этого нужно затратить значительную энергию (кривая с индек­сом Soна рис. 24.26), такой процесс са­мопроизвольно произойти не может. Наименьшую энергию молекула имеет при перекрывании p-орбиталей, поэто­му p-орбитали называют связывающи­ми. При поглощении фотона и переходе в возбужденное состояние молекула сразу после перехода сохраня­ет плоскую конфигурацию основного состояния. Но возбужденные p*-орбитали (S1или Т1состояния на рис. 24.26) являются разрых­ляющими: наименьшую энергию имеет конфигурация, в которой p-связь разрывается и две части молекулы поворачиваются вокруг s-связи на 90°. При возвращении молекулы в основное состояние она может претерпеть цис-тпранс- или транс-цис-изомеризицию; цис-транс-фотоизошеризащш пигмента ретиналя принадлежит ве­дущая роль в зрительной рецепции (см. § 24.10).

К фотохимическим превращениям молекулы, поглотившей фотон, приводят резкие изменения ее донорно-акцепторных свойств. В возбужденной молекуле освобождается электронная вакансия на верхней заполненной орбитали (So на рис. 23.16), в результате чего молекула становится акцептором электрона, спо­собным вступать в реакции фотовосстановления с подходящими донорами. Примером такой реакции может служить открытая А. А. Красновским (1948) реакция фотовосстановления хлоро­филла. Это открытие имело фундаментальное значение в позна­нии процесса фотосинтеза. Наряду с этим в возбужденной молеку­ле появляется электрон на сравнительно высоко расположенной нижней свободной орбитали (S1 или Т1на рис. 23.16). В результа­те этого молекула становится донором электрона и легко вступает в реакции фотоокисления. Так, возбужденные ароматические аминокислоты триптофан и тирозин способны отдавать электрон молекулам среды, что приводит к их ионизации.

Если рядом с возбужденной молекулой находится подходящий акцептор, то энергия может быть перенесена на него. Электрон­но-возбужденный акцептор может либо сам химически модифицироваться или вступить в реакцию с субстратом. Подобные реак­ции могут быть отнесены к фотосенсибилизированным.

Механизмы фотосенсибилизированных реакций крайне раз­нообразны. Практически удобно классифицировать их на два ви­да: нуждающиеся в присутствии кислорода и не нуждающиеся в нем. Фотобиологические эффекты, для осуществления кото­рых требуется участие трех составляющих — света, кислорода и фотосенсибилизатора — принято называть фотодинамическими эффектами, а соответствующие фотосенсибилизаторы — фото­динамическими. Фотодинамические эффекты инициируются фо­тосенсибилизаторами из триплетного электронно-возбужденного состояния T1 (см. рис. 23.16).

Более детальная классификация фотосенсибилизированных ре­акций основана на природе реакционно-способных фотопродуктов, непосредственно реагирующих с субстратом. Рассмотрим этот воп­рос на примере псораленов — фотосенсибилизаторов растительно­го происхождения, повышающих чувствительность биообъектов к УФ-А-излучению.

В реакциях типа I происходит перенос электрона (или водоро­да) между электронно-возбужденным фотосенсибилизатором и субстратом, сопровождающийся образованием свободных радика­лов, которые взаимодействуют с молекулярным кислородом.

В реакциях типа II происходит перенос энергии от фотосенси­билизатора, находящегося в триплетном электронно-возбужден­ном состоянии T1на молекулярный кислород по схеме:


— поглощение света и образование триплетного



состояния фотосенсибилизатора;



— перенос энергии и образование синглетного

электронно-возбужденного молекулярного кислорода. Образую­щийся при этом синглетный кислород 1О2 взаимодействует с суб­стратом, окисляя последний:

1О2 + субстрат -> окисленный субстрат.

В реакциях типа II фотосенсибилизатор работает подобно ката­лизатору и в реакции не расходуется. Субстратами фотоокисле­ния служат молекулы ДНК, белков, ненасыщенных липидов и другие.

В реакциях типа III участвуют электронно-возбужденные мо­лекулы псораленов, предварительно в темноте встроившиеся в двуспиральную ДНК. При этом они ковалентно присоединяются к тимину, повреждая либо одну из нитей двуспиральной ДНК, ли­бо образуя межнитевую сшивку в двуспиральной молекуле ДНК. Реакции типов I—III могут осуществляться только в том слу­чае, если субстрат облучается в присутствии фотосенсибилизато­ра. Это связано с коротким временем жизни реакционно-способ­ных фотопродуктов. Так, время жизни синглетных и триплетных электронно-возбужденных состояний молекул составляет, соот­ветственно, около 10-9 и 10-6 с, синглетного кислорода — около 10-6 с, свободных радикалов — микро- или миллисекунды. Невоз­можно фотомодифицировать субстрат, сначала отдельно облучив фотосенсибилизатор, а затем после выключения света добавив к нему субстрат.

Модификация субстрата путем добавления к нему предвари­тельно облученных фотосенсибилизаторов возможна в реакциях типа IV. При облучении растворов фотосенсибилизаторов в при­сутствии кислорода в них образуются относительно стабильные продукты фотоокисления, имеющие время жизни от нескольких секунд до нескольких дней. Эти продукты фотоокисления при столкновениях с молекулами субстрата реагируют с ними, давая биологически активные конечные продукты.

Фотохимические реакции, инициируемые светом в тканях че­ловека и животных, могут иметь как положительные, так и отри­цательные последствия. Раздел медицины, посвященный лечеб­ному применению или патологическим последствиям действия оптического излучения, называется фото медициной.

Известны терапевтические эффекты оптического излучения, осуществляющиеся за счет поглощения света молекулами, содер­жащимися в биологических тканях. Так, УФ-В-облучение кожи используется для лечения кожного заболевания — псориаза. Фо­тотерапия без использования экзогенных фотосенсибилизаторов применяется для лечения желтухи новорожденных. Желтуха но­ворожденных возникает из-за накопления в крови аномально вы­соких концентраций продукта распада гемоглобина — билируби­на. Это связано с тем, что в первые дни жизни у некоторых детей наблюдается недостаток фермента глюкуронилтрансферазы, пре­вращающей плохо растворимый в воде билирубин в его водораст­воримое производное. Гидрофобный билирубин склонен накапли­ваться в клетках мозга, что может приводить к необратимым из­менениям в центральной нервной системе. Билирубин имеет максимум поглощения в синей области спектра. Под действием синего света билирубин легко фотоизомеризуется непосредственно в кровеносных сосудах, образуя водорастворимые продукты, легко выводящиеся из организма. Таким образом устраняются патологические последствия гипербилирубинемии.

Существует ряд терапевтических методов, называемых фото­химиотерапией, в которых используется совместное воздействие экзогенных фотосенсибилизаторов и света. Наиболее распростра­нены два вида фотохимиотерапии: ПУВА-терапия кожных забо­леваний и фотодинамическая терапия злокачественных новообра­зований.

В ПУВА-терапии5 в качестве фотосенсибилизаторов использу­ются псоралены в сочетании с УФ-А-облучением кожи. Она эф­фективна при псориазе, витилиго, кожной Т-клеточной лимфоме и других дерматозах. При ПУВА-терапии в коже человека проте­кают все IV типа фотосенсибилизированных реакций, наиболее важны из них реакции типов III и IV.

Фотодинамическая терапия (ФДТ) используется для удаления опухолей, доступных для облучения светом. ФДТ основана на применении локализующихся в опухолях фотосенсибилизаторов, повышающих чувствительность тканей при их последующем об­лучении видимым светом. Часто в качестве фотосенсибилизато­ров при ФДТ используют производные гематопорфирина, погло­щающие в красной области спектра. Ведущую роль при ФДТ иг­рают реакции типа П. Разрушение опухолей при ФДТ основано на трех эффектах: 1) прямое фотохимическое уничтожение клеток опухоли; 2) повреждение кровеносных сосудов опухоли, приводя­щее к ишемии и гибели опухоли; 3) ФДТ способно вызывать вос­палительную реакцию, мобилизующую противоопухолевую им­мунную защиту тканей организма.

 

 

 

1 Ультрафиолетовое излучение с длинами волн менее 200 нм исполь­зуется редко. Оно поглощается кислородом воздуха, поэтому его дейст­вие можно изучать только в специальных условиях, например, в ваку­уме, из-за этого ультрафиолет с X < 200 нм называют вакуумным.

2 Избирательность действия отличает биологические эффекты света от эффектов ионизирующего излучения. Поглощение квантов рентгенов­ского или у-излучения осуществляется не молекулами, а атомами и не за­висит от того, в состав каких молекул эти атомы входят (см. § 26.4). По­этому поглощение ионизирующего излучения происходит в основном те­ми элементами, которых в организме больше. Так как наш организм на 80% состоит из воды, то радиохимические процессы приводят преимуще­
ственно к появлению радикалов воды, которые в дальнейшем поврежда­ют белки, нуклеиновые кислоты, липиды и др.

3 Здесь интенсивность выражена в числе фотонов, падающих на 1 м2
за 1 с.

4 Фотолиз — химическая модификация вещества под действием света.

5 Русское название этой терапии возникло путем транслитерации анг­лийской аббревиатуры PUVA, произошедшей от Psoralens + UVA-radia-tion.

 

 

 

§ 24.10. Биофизические основы зрительной рецепции

В этом параграфе описаны процессы, протекающие от момента поглощения кванта света молекулой зрительного пигмента до возникновения рецепторного потенциала на клеточной мембране палочки.

Сначала рассмотрим, как устроен зрительный рецептор. На рйс. 24.27 показаны: 1 — разрез глаза; 2 — колбочка; 3 — палоч­ка (М — скопление митохондрий); 4 — диск наружного сегмента палочки; 5 — фрагмент мембраны диска со встроенной в нее моле­кулой родопсина; 6 — хромофорная группировка родопсина — ретиналь в 11-цис- и полностью-трамс-конформации. Свет, попав­ший в глаз (см. § 21.4), фокусируется оптической системой на слой светочувствительных клеток сетчатки — палочек и колбо­чек. Палочки (их около 125 млн) располагаются по всей поверх­ности полусферической сетчатки и отвечают за черно-белое, или сумеречное, зрение. Колбочек значительно меньше (примерно 6,5 млн). Они, главным образом, сконцентрированы в централь­ной части сетчатки, на прямой, проходящей через центры рогови­цы и хрусталика, и отвечают за цветовое зрение при достаточно ярком освещении.

 

 

 

Строение сетчатки человека и позвоночных животных на пер­вый взгляд может показаться парадоксальным.

Светочувствительные клетки находятся в заднем слое сетчатки. Прежде чем свет попадет на них, он должен пройти через несколько слоев нервных клеток. Мало того, сами палочки и колбочки ориентиро­ваны к свету своим внутренним сегментом, не содержащим зри­тельного пигмента (см. рис. 24.27). Однако такая организация не снижает существенно чувствительности глаза к свету, так как нервные клетки и внутренние сегменты самих светочувствитель­ных клеток прозрачны для видимого света.

Самые ранние исследования зрения касались порога чувстви­тельности глаза. Абсолютный порог чувствительности зре­ния человека (т. е. минимальная еще обнаруживаемая энергия светового импульса при отсутствии светового фона и в условиях полной световой адаптации) равен 2,1 • 10-17 — 5,7 • 10-17 Дж на поверхности роговицы глаза, что соответствует 58—148 квантам сине-зеленого света. Однако из них только 5—15 квантов погло­щаются собственно молекулами зрительного пигмента в палочках сетчатки, а остальные теряются. Около 4% света отражается от роговицы, около 50% поглощается оптическими средами глаза, при этом около 80—85% света, дошедшего до сетчатки, проходит сквозь нее и поглощается в клетках пигментного эпителия. Бла­годаря пигментному эпителию, подстилающему сетчатку, резко уменьшается количество отраженного и рассеянного от задней стенки глаза света, и тем самым улучшается острота зрения. Так как в сетчатке содержится 125 млн палочек, все кванты при поро­говой интенсивности (а их всего 5—15) поглощаются разными па­лочками.

Рассмотрим строение и функции палочек (см. рис. 24.27). Зри­тельный пигмент палочек родопсин сосредоточен в наружных сег­ментах палочек, где он встроен в зрительные диски. Диски пред­ставляют собой замкнутые бимолекулярные липидные мембра­ны, напоминающие собой расплющенные воздушные шары, уложенные в стопку. Наружный сегмент соединен с внутренним сегментом тонкой соединительной ножкой. Во внутреннем сег­менте рядом с ножкой сосредоточено большое количество мито­хондрий, в нем же располагается ядро клетки. В конце внутрен­него сегмента, повернутого к свету, находится синаптический контакт с нервным волокном.

Молекулы родопсина пронизывают липидный бислой мембран зрительных дисков. Для нормальной фоторецепции очень важно, чтобы молекулы пигмента могли совершать быструю латераль­ную диффузию и находились в очень «мягком» окружении в мембране, так как молекулы пигмента после поглощения фотона претерпевают значительные конформационные перестройки. Ни­зкая вязкость липидного слоя обусловлена очень высоким (до 50%) содержанием полиненасыщенной докозагексеновой жирной кислоты (22 : 6 — она содержит 22 атома углерода и 6 ненасыщен­ных двойных связей). Однако по этой же причине в липидах мембран могут легко активироваться процессы пероксидного окисления, что, по-видимому, лежит в основе ряда заболеваний глаз.

Зрительный пигмент родопсин — сложный белок. Он состоит из гликопротеидной части — опсина и хромофорной группы — ре-тинальдегида, или просто ретиналя. Ретиналь может иметь не­сколько пространственных изомеров, например 9-цис-ретиналь, 11-цис-ретиналь, полностью-транс-ретиналь и др. Вся совокуп­ность фотохимических превращений родопсина зиждется на двух фундаментальных явлениях. Во-первых, ретиналь под действием света способен переходить в различные цис-транс-изомеры, наи­более важные из которых (11-цис- и полностью-транс-ретиналь) изображены на рис. 24.27. Во-вторых, только одна из этих изо­мерных форм, а именно 11-цис-ретиналь, структурно соответству­ет центру связывания ретиналя на опсине и образует с ним проч­ный комплекс. Другие изомеры таким соответствием не обладают и комплекс хромофор-белок непрочен.

Единственной фотохимической реакцией, которая приводит к появлению ощущения света, в зрительном рецепторе является фотоизомеризация (см. §24.9) 11-цис-ретиналя в полностью-транс-конформацию. После образования транс-формы простран­ственное соответствие хромофора и опсина нарушается, а это при­водит к целой серии конформационных перестроек в молекуле белка, которые сопровождаются изменениями в спектре поглоще­ния зрительного пигмента. Перестройки родопсина завершаются его распадом на опсин и полностью-яузамс-ретиналь. Далее фер­мент изомераза переводит полностью-транс-ретиналь в 11-цис-ретиналь, после чего происходит его присоединение к опсину и реге­нерация родопсина.

Фотопревращения родопсина приводят к электрическому отве­ту рецепторной клетки. За этим процессом можно проследить пу­тем регистрации электроретинограмм (экстраклеточного отведе­ния потенциалов от сетчатки). Сразу после освещения палочки короткой вспышкой света наблюдается продолжающийся при­мерно 1 мс ранний рецепторный потенциал (РРП), амплитуда ко­торого растет с увеличением интенсивности вспышки, но не превышает 5 мВ (рис. 24.28). Затем через 1 мс развивается поздний рецепторный потенциал (ПРП). Обращают на се­бя внимание несколько особенностей рецепторных потенциалов. Во-первых, в отличие от всех других известных кле­ток на цитоплазматической мембране наружных сегментов палочек потенци­ал имеет знак (+) внутри и знак (-) сна­ружи. Под действием света происходит развитие некоторого подобия потенциала действия нервных клеток, но с противоположным знаком. Во-вторых, индуцированный светом сигнал состоит из двух фаз: РРП и ПРП, природа которых совершенно различна. По-видимо­му, РРП связан с перемещением молекул родопсина во время конформационных перестроек, вызванных освещением. На молекуле этого белка имеются фиксированные заряды, положение которых относительно бислоя липидов после поглощения квантов света меняется, что и является причиной РРП. Следует подчеркнуть, что в возникновении РРП не участвуют никакие процессы изме­нения ионной проницаемости мембран. После РРП начинаются процессы совершенно иной природы, в которых решающую роль играет движение ионов через клеточную мембрану.

Особенностью наружных сегментов палочек сетчатки является то, что в покое (в темноте) их цитоплазматическая мембрана име­ет высокую проницаемость для ионов натрия, тогда как в покое мембраны нервных и мышечных клеток имеют высокую проница­емость для ионов калия. Асимметрия распределения ионов в па­лочке по сравнению с внешней средой такая же, как и для других клеток: внутри мало натрия, но много калия. Ведущую роль в от­крывании натриевых каналов цитоплазматических мембран па­лочек играет циклический гуанозинмонофосфат, на свету его кон­центрация падает. Поэтому после поглощения света родопсином натриевые каналы проницаемости закрываются и главным потен­циал-образующим ионом становится калий. В результате разви­вается поздний рецепторный потенциал со знаком (-) внутри клетки.

При слабом свете максимум чувствительности глаза человека расположен в области около 500 нм, что соответствует максимуму поглощения родопсина, содержащегося в палочках. На ярком свету максимум чувствительности смещается к 550 нм, что соот­ветствует максимуму спектра поглощения пигмента в наиболеераспространенном типе колбочек. Пиг­мент колбочек содержит тот же самый 11-транс-ретиналь, как и родопсин, но белковая часть пигмента отличается, поэтому пигменты колбочек носят на­звание иодопсинов.

При измерении спектров поглоще­ния отдельных колбочек оказалось, что каждая колбочка содержит только один вид иодопсина, а типов колбочек всего три. Иодопсины человека имеют максимумы поглощения при 445, 535 и 570 нм. Поглощение света иодопсинами приводит к появлению РРП в кол­бочках. Для того чтобы измерить спектр действия РРП, регистрируют вызы­ваемые короткими вспышками яркого монохроматического света амплитуды РРП (рис. 24.29, а). На основании этих измерений строят спектры действия РРП (рис. 24.29, б), совпадающие по форме со спектрами поглощения зри­тельных пигментов. В сетчатке карпа таким способом обнаружено три типа колбочек с максимумами спектров дей­ствия при 462, 529 и 611 нм.

При некоторых генетических заболеваниях нарушается синтез одного из белков иодопсинов, в результате чего не образуется со­ответствующий пигмент цветного зрения и человек утрачивает способность различать цвета. Эта болезнь называется дальтониз­мом.

Роговица и хрусталик помимо того, что они ответственны за формирование изображения на сетчатке, выполняют также роль граничных светофильтров, пропускающих излучение с длинами волн более 300 и 400 нм, соответственно. В обеих структурах при очень больших дозах УФ-облучения происходят фотохимические повреждения, выражающиеся в помутнении и воспалительных реакциях. Главная причина помутнения хрусталика (катарак­ты) — его фотоповреждение. В присутствии сенсибилизаторов фо­топовреждения глаз резко усиливаются. Так, при ПУВА-терапии заболеваний кожи (см. § 24.9) часть сенсибилизатора, естествен­но, проникает в структуры глаза. УФ-А-облучение сенсибилизированных животных приводило к морфологически выраженным повреждениям роговицы, вещества внутренней камеры глаза, ирисовой диафрагмы и хрусталика. В основе фотосенсибилизированного псораленами повреждения хрусталика глаза лежат окис­лительные реакции с белками хрусталика человека — кристаллинами. Максимум спектра действия сенсибилизированного псора­ленами фотоповреждения глаз расположен при 320—340 нм, хвост спектра доходит до 380 нм. Больные, получающие ПУВА-терапию, во время УФ-А-облучения обязательно надевают светоза­щитные очки, чтобы избежать повреждения глаз. Им также в те­чение нескольких часов после приема таблеток псораленов нельзя находиться на прямом солнечном свету, содержащем большое ко­личество УФ-А-излучения. Фотоповреждения хрусталика необра­тимы, так как поврежденные молекулы из него никогда не выво­дятся.

До сетчатки УФ-излучениё не доходит, поэтому псоралены и другие фотосенсибилизаторы, поглощающие при l < 400 нм, не эффективны. Однако в клетках сетчатки осуществляются фото­повреждения под действием света, поглощенного хромофорной группой зрительных пигментов ретиналем. Ретиналь, входящий в состав зрительных пигментов, расходует энергию электронного возбуждения в процессах цис-транс-изомеризации. В других фо­тохимических реакциях связанный с опсином 11-цис-ретиналь, по-видимому, практически не участвует. Но свободный полностью-транс-ретиналь является на свету эффективным генерато­ром синглетного кислорода, т. е. способен фотосенсибилизировать реакции типа II (см. § 24.9). Квантовый выход триплетных воз­бужденных состояний свободного полностью-транс-ретиналя вы­сок; он составляет 0,4—0,7. Максимумы спектров поглощения различных изомеров свободного ретиналя располагаются при 360—380 нм, длинноволновый хвост захватывает фиолетовую об­ласть видимого света. Поэтому фиолетовый свет вызывает генера­цию триплетных возбужденных состояний ретиналя, что в свою очередь приводит к значительному окислительному повреждению мембран дисков рецепторных клеток. Субстратом окисления яв­ляются главным образом остатки полиненасыщенной докозагексеновой жирной кислоты, содержание которой в фосфолипидах мембран рецепторных дисков очень велико. Для защиты мембран дисков от фотосенсибилизированного окисления в них содержит­ся витамин Е (a-токоферол) в высоких концентрациях. Защитный эффект этого витамина обусловлен тем, что он, с одной стороны, способен переводить синглетный кислород в основное состояние, с другой стороны, он является эффективным ингибитором свобод­но-радикальных реакций цепного окисления ненасыщенных липидов. Фотоповреждение мембран, сенсибилизированное ретиналем, — очень важный негативный эффект, лежащий в основе по­вреждения сетчатки глаз под действием видимого света. Для защиты глаз можно рекомендовать два способа: применять антиоксиданты, а также пользоваться светозащитными очками, не пропускающими фиолетовый и синий свет. Ношение синих очков (пропускающих синий свет) очень вредно для глаз, так как эти оч­ки, ослабляя интегральный световой поток, стимулируют расши­рение зрачков. На сетчатку в результате попадает большее коли­чество фиолетового света, и фотосенсибилизируемое свободным ретиналем повреждение усиливается.

 

 

 

Глава 25
1   ...   33   34   35   36   37   38   39   40   41


написать администратору сайта