Главная страница
Навигация по странице:

  • Механическое движение

  • Поступательное движение

  • Вращательное движение

  • Колебательное движение

  • Законы Ньютона

  • В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

  • Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению

  • доклад. Механика. Механика представляет собой науку, являющуюся разделом физики, целью которой является изучение принципов движения и взаимодействие отдельных материальных тел


    Скачать 23.52 Kb.
    НазваниеМеханика представляет собой науку, являющуюся разделом физики, целью которой является изучение принципов движения и взаимодействие отдельных материальных тел
    Анкордоклад
    Дата16.02.2023
    Размер23.52 Kb.
    Формат файлаdocx
    Имя файлаМеханика.docx
    ТипРешение
    #940268

    Механика

    Механика представляет собой науку, являющуюся разделом физики, целью которой является изучение принципов движения и взаимодействие отдельных материальных тел. А вот движением в науке механике будет изменение положения как во времени, так и в пространстве. Механикой принято считать науку, задачей которой является решение любых задач на движение, равновесие и взаимодействие тел. И движение планеты Земля вокруг Солнца также подчиняется законам механики. С другой стороны, в понятие механики входит и создание проектов на основании расчетов для двигателей, машин, их деталей. В данному случае можно говорить не только о механике, но и о механике сплошной среды. Механика также призвана решать проблемы движения твердых, газообразных, жидких тел, имеющих способность к деформации. Т.е. речь идет о материальных телах, заполняющих все пространство сплошным непрерывным потоком с меняющимся расстоянием между точками в процессе движения.

    Механика подразделяется на: механику сплошных сред, теоретическую и специальную (о механизмах и машинах, механика грунта, сопротивление и др.) - по предмету изучения; классическая, квантовая и релятивистская - по отношению в понятиям времени, материи и пространства. Предметом изучение механики являются механические системы. Каждая механическая система существует при наличии определенных степеней свободы. Состояние механической системы описывается системой обобщенных координат и импульсов. Соответственно, задача механики - узнать и исследовать свойства систем и определить наличие эволюции во времени.

    Механические системы бывают замкнутыми, открытыми и закрытыми - по взаимодействию с окружающим пространством; статические и динамические - по наличию возможности видоизменяться во времени. Основными и значимыми механическими системами признаны: тело абсолютной упругости, физический маятник, тело со способностью к деформации, математический маятник, материальная точка. Школьный раздел механики изучает кинематику, динамику, статику и законы сохранения. В то время как теоретическая механика состоит из небесной, неголономной, нелинейной динамики, теории устойчивости, теории катастроф, и гироскопов.

    Механика сплошных тел - это, прежде всего гидростатика, аэромеханика, гидродинамика, реология, а также теории упругости и пластичности, газовая динамика и механика разрушения и композитов. Большинство курсов по теории механики ограничивается теорией твердых тел. Деформируемые тела изучаются в теории упругости и теории пластичности. А жидкости и газы изучаются в механике жидкостей и газов. Дифференциальное и интегральное исчисления - основа классической механики. Исчисления разработаны Ньютоном и Лейбницем. Все 3 закона Ньютона относятся к разным вариационным принципам. Таким образом, классическая механика основывается на законах Ньютона. Но на сегодняшний день известно 3 варианта развития событий, при которых классическая механика не соответствует реальности. К примеру, свойства микромира, здесь для объяснения законов необходим переход от классической к квантовой механике. Другой пример, это скорости близкие к скорости света - здесь требуется специальная теория относительности. И третий вариант - системы с большим числом частиц, когда требуется переход к статической физике.
    Механическое движение

    Механическое движение – это изменение положения тела в пространстве относительно других тел.

    Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения. Далее кратко рассмотрим основные виды механического движения.

    Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

    Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

    Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

    Упоминавшиеся нами колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

    Колебательное движение – это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях.

    Например, колебательное движение совершает маятник в часах.

    Поступательное и вращательное движения – самые простые виды механического движения.

    Законы Ньютона

    Законы Ньютона относятся к движению массивных тел в инерциальной системе отсчета, иногда называемой ньютоновской системой отсчета, хотя сам Ньютон никогда не описывал такую ​​систему. Инерциальную систему отсчета можно описать как трехмерную систему координат, которая либо стационарна, либо равномерно линейна, т. е. Не ускоряется и не вращается. Он обнаружил, что движение в такой инерциальной системе отсчета может быть описано тремя простыми законами.

    Первый закон движения Ньютона

    Первый Закон Движения гласит: Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения. Это просто означает, что вещи не могут начинать, останавливать или изменять направление самостоятельно.

    Требуется сила, действующая на них извне, чтобы вызвать такое изменение. Это свойство массивных тел сопротивляться изменениям в их движении иногда называют инерцией.

    В современной физике первый закон Ньютона принято формулировать в следующем виде:

    Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

    Второй закон движения Ньютона

    Второй закон движения описывает, что происходит с массивным телом, когда на него воздействует внешняя сила. В нем говорится: Сила, действующая на объект, равна массе этого объекта своего ускорения. Это написано в математической форме как F = ma, где F — сила, m — масса, a — ускорение. Жирные буквы указывают, что сила и ускорение являются векторными величинами, что означает, что они имеют как величину, так и направление. Сила может быть одной силой, или это может быть векторная сумма более чем одной силы, которая является чистой силой после объединения всех сил.

    Когда постоянная сила действует на массивное тело, она заставляет ее ускоряться, т. е. Изменять свою скорость с постоянной скоростью. В простейшем случае сила, приложенная к неподвижному объекту, заставляет его ускоряться в направлении силы. Однако, если объект уже находится в движении или если эта ситуация просматривается из движущейся системы отсчета, это тело может показаться ускоряющимся, замедляющим или изменяющим направление в зависимости от направления силы и направлений, в которых объект и система отсчета перемещается относительно друг друга.

    В современной физике второй закон Ньютона принято формулировать в следующем виде:

    В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

    При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:



    Третий закон движения Ньютона

    Третий закон движения гласит: Для каждого действия существует равное противодействие. Этот закон описывает то, что происходит с телом, когда оно оказывает силу на другое тело. Силы всегда встречаются парами, поэтому, когда одно тело толкает другого, второе тело отталкивается так же сильно. Например, когда вы нажимаете тележку, тележка отталкивается от вас; когда вы тянете за веревку, веревка откидывается на вас; когда сила тяжести тянет вас к земле, земля подталкивает вас и когда ракета воспламеняет свое топливо за ним, расширяющийся выхлопной газ толкается на ракете, заставляя его ускоряться.

    Если один объект намного, гораздо более массивный, чем другой, особенно в случае привязки первого объекта к Земле, практически все ускорение передается второму объекту, и ускорение первого объекта можно безопасно игнорировать, Например, если вы бросили мяч на запад, вам не нужно было бы считать, что вы на самом деле заставили вращаться Землю быстрее, пока мяч находился в воздухе. Однако, если вы стоите на роликовых коньках, и вы бросили мяч для боулинга, вы начнете двигаться назад с заметной скоростью.

    В современной физике третий закон Ньютона принято формулировать в следующем виде:

    Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:



    Три закона были проверены бесчисленными экспериментами за последние три столетия, и до сих пор они широко используются для описания видов предметов и скоростей, с которыми мы сталкиваемся в повседневной жизни. Они составляют основу того, что сейчас известно как классическая механика, а именно изучение массивных объектов, которые больше, чем очень мелкие масштабы, рассматриваемые квантовой механикой, и которые движутся медленнее, чем очень высокие скорости, релятивистские механики.


    написать администратору сайта