Главная страница
Навигация по странице:

  • Заочный факультет Кафедра «Автоматизированные системы управления»

  • Обзор методов обеспечения качества обслуживания

  • Инжиниринг трафика

  • Методы инжиниринга трафика

  • Работа в недогруженном режиме

  • Список использованной литературы

  • Сети и телекумманикации. Сети_и_телекоммуникации_ПальмовНН. Методы обеспечения качества обслуживания. Обзор. Инжиниринг трафика. Работа в недогруженном режиме


    Скачать 51.79 Kb.
    НазваниеМетоды обеспечения качества обслуживания. Обзор. Инжиниринг трафика. Работа в недогруженном режиме
    АнкорСети и телекумманикации
    Дата13.10.2021
    Размер51.79 Kb.
    Формат файлаdocx
    Имя файлаСети_и_телекоммуникации_ПальмовНН.docx
    ТипРеферат
    #246928

    М ОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

    УНИВЕРСИТЕТ (МАДИ)

    Заочный факультет

    Кафедра «Автоматизированные системы управления»

    РЕФЕРАТ

    По дисциплине «Сети и телекоммуникации»

    На тему «Методы обеспечения качества обслуживания. Обзор. Инжиниринг трафика. Работа в недогруженном режиме.»

    Выполнил: студент гр.4ЗбАСУп

    Пальмов Н.Н.

    Проверил: ст.преподаватель кафедры АСУ Самодин А.А.

    Москва

    2021

    Содержание

    1. Введение

    2. Обзор методов обеспечения качества обслуживания

    3. Инжиниринг трафика

    4. Методы инжиниринга трафик

    5. Работа в недогруженном режиме

    6. Выводы

    7. Список использованной литературы


    Введение

    Методы обеспечения качества обслуживания (QoS) занимают сегодня важное место в арсенале технологий сетей с коммутацией пакетов, так как они обеспечивают устойчивую работу современных мультимедийных приложений, таких как ІР-телефония, видео- и радиовещание, интерактивное дистанционное обучение и т. п. Методы QoS направлены на улучшение характеристик производительности и надежности сети, рассмотренных в предыдущей главе; эти методы позволяют уменьшить задержки, вариации задержек, а также потери пакетов в периоды перегрузки сети, создавая тем самым необходимые условия для удовлетворительного обслуживания сетью трафика приложений.

    Методы обеспечения качества обслуживания направлены на компенсацию негативных последствий временных перегрузок, возникающих в сетях с коммутацией пакетов. В этих методах используются различные алгоритмы управления очередями, резервирования и обратной связи, позволяющие снизить негативное влияние очередей до приемлемого для пользователей уровня.

    Обзор методов обеспечения качества обслуживания

    Очереди являются неотъемлемым атрибутом сетей с коммутацией пакетов. Сам принцип работы таких сетей подразумевает наличие буфера у каждых входного и выходного интерфейсов коммутатора пакетов. Буферизация пакетов во время перегрузок представляет собой основной механизм поддержания пульсирующего трафика, обеспечивающий высокую производительность сетей этого типа. Как вы знаете, в сетях с другим типом коммутации, а именно в сетях с коммутацией каналов, промежуточная буферизация данных не поддерживается. В то же время очереди означают неопределенную задержку при передаче пакетов через сеть, а в некоторых случаях и потери пакетов из-за переполнения буфера коммутатора или маршрутизатора, отведенного под очередь. Задержки и потери пакетов —это главный источник проблем для чувствительного к задержкам трафика. Так как сегодня операторы пакетных сетей очень заинтересованы в передаче пульсирующего трафика, им необходимы средства достижения компромисса между требованиями предельной загрузки своей сети и качеством обслуживания одновременно всех типов трафика.

    Существует два подхода к определению того, какие характеристики производительности и надежности следует отнести к характеристикам качества обслуживания, то есть к тем характеристикам, которые могут быть улучшены с помощью методов QoS.

    В одном случае, под характеристиками QoS понимается только три характеристики:

    1. односторонняя задержка пакетов;

    2. вариация задержек пакетов;

    3. потери пакетов.

    Другой подход заключается в расширенном толковании характеристик QoS, когда характеристики скорости потока, такие как средняя скорость, пиковая скорость и пульсация, также относят к характеристикам QoS.

    В методах обеспечения качества обслуживания используются различные механизмы, направленные на снижение негативных последствий пребывания пакетов в очередях с сохранением в то же время положительной роли очередей. Большинство из них учитывает и использует в своей работе факт существования в сети трафика различного типа в том отношении, что каждый тип трафика предъявляет различные требования к характеристикам производительности и надежности сети. Например, трафик просмотра веб-страниц мало чувствителен к задержкам пакетов и не требует гарантированной пропускной способности сети, зато чувствителен к потерям пакетов; в то же время как голосовой трафик очень чувствителен к задержкам пакетов, требует гарантированной пропускной способности сети, но может «терпеть» потерю небольшого процента пакетов без значительного ущерба для качества (впрочем, последнее свойство во многом зависит от используемого метода кодирования голосового сигнала).

    Добиться одновременного соблюдения всех характеристик QoS для всех видов трафика весьма сложно. Одним из наиболее значимых факторов, влияющих на характеристики качества обслуживания, является уровень загрузки сети трафиком, то есть уровень использования пропускной способности линий связи сети.

    Если этот уровень постоянно достаточно низок, то трафик всех приложений обслуживается с высоким качеством большую часть времени (хотя кратковременные перегрузки сети, приводящие к задержкам и потерям пакетов, все равно возможны, но они случаются очень редко). Такое состояние сети называется «недогруженным» или же используется термин сеть с избыточной пропускной способностью. Постоянно поддерживать все части сети в недогруженном состоянии достаточно дорого и сложно, но для наиболее ответственной части сети, такой как магистраль, этот подход применяется, и связан он с постоянным слежением за уровнем загрузки каналов магистрали и периодическим увеличением их пропускной способности по мере приближения загрузки к критическому уровню.

    Методы QoS основаны на другом подходе, а именно тонком перераспределении имеющейся пропускной способности между трафиком различного типа в соответствии с требованиями приложений. Очевидно, что эти методы усложняют сетевые устройства, так как означают необходимость знать требования всех классов трафика, уметь их классифицировать и распределять пропускную способность сети между ними. Последнее свойство обычно достигается за счет использования нескольких очередей пакетов для каждого выходного интерфейса коммуникационного устройства вместо одной очереди; при этом в очередях применяют различные алгоритмы обслуживания пакетов, чем и достигается дифференцированное обслуживание трафика различных классов. Поэтому методы QoS часто ассоциируются с техникой управления очередями.

    Помимо собственно техники организации очередей, к методам QoS относят методы контроля параметров потока трафика, так как для гарантированно качественного обслуживания нужно быть уверенными, что обслуживаемые потоки соответствуют определенному профилю. Эта группа методов QoS получила название методов кондиционирования трафика.

    Особое место занимают методы обратной связи, которые предназначены для уведомления источника трафика о перегрузке сети. Эти методы рассчитаны на то, что при получении уведомления источник снизит скорость выдачи пакетов в сеть и тем самым ликвидирует причину перегрузки.

    Механизмы QoS можно применять по-разному. В том случае, когда они применяются к отдельным узлам без учета реальных маршрутов следования потоков трафика через сеть1, условия обслуживания трафика этими узлами улучшаются, но гарантий того, что поток будет обслужен с заданным уровнем качества, такой подход не дает. Гарантии можно обеспечить, если применять методы QoS системно, резервируя ресурсы сети для потока на всем протяжении его маршрута, другими словами, «из конца в конец».

    К методам QoS тесно примыкают методы инжиниринга трафика. Согласно методам инжиниринга трафика маршруты передачи данных управляются таким образом, чтобы обеспечить сбалансированную загрузку всех ресурсов сети и исключить за счет этого перегрузку коммуникационных устройств и образование длинных очередей. В отличие от методов QoS в методах инжиниринга трафика не прибегают к организации очередей с различными алгоритмами обслуживания на сетевых устройствах. В то же время в методах QoS в их традиционном понимании не используют такой мощный рычаг воздействия на рациональное распределение пропускной способности, как изменение маршрутов трафика в зависимости от фактической загрузки линий связи, что позволяет легко отделить методы QoS от методов инжиниринга трафика.

    В следующей группе методов борьба с перегрузками ведется путем снижения постоянной нагрузки на сеть. То есть в этих методах проблема рассматривается с другой стороны: если пропускной способности сети недостаточно для качественной передачи трафика приложений, то нельзя ли уменьшить объем самого трафика? Наиболее очевидным способом снижения объема трафика является его компрессия, существуют и другие способы, приводящие к тому же результату, например размещение источника данных ближе к его потребителю (кэширование данных).

    Инжиниринг трафика

    Задачу выбора маршрутов для потоков (или классов) трафика с учетом соблюдения требований QoS решают методы инжиниринга трафика (Traffic Engineering, ТЕ). С помощью этих методов стремятся добиться еще одной цели —по возможности максимально и сбалансировано загрузить все ресурсы сети, чтобы сеть при заданном уровне качества обслуживания обладала как можно более высокой суммарной производительностью.

    Методы ТЕ основаны на резервировании ресурсов. То есть они не только позволяют найти рациональный маршрут для потока, но и резервируют для него пропускную способность ресурсов сети, находящихся вдоль этого маршрута.

    Методы инжиниринга трафика являются сравнительно новыми для сетей с коммутацией пакетов. Это объясняется во многом тем, что передача эластичного трафика не предъявляла строгих требований к параметрам QoS. Кроме того, Интернет долгое время не являлся коммерческой сетью, поэтому задача максимального использования ресурсов не считалась первоочередной для ІР-технологий, лежащих в основе Интернета.

    Сегодня ситуация изменилась. Сети с коммутацией пакетов должны передавать различные виды трафика с заданным качеством обслуживания, максимально используя возможности своих ресурсов. Однако для этого им нужно изменить некоторые, ставшие уже традиционными; подходы к выбору маршрутов.

    Методы инжиниринга трафика

    Исходными данными для методов инжиниринга трафика являются:

    1. характеристики передающей сети —ее топология, а также производительность составляющих ее коммутаторов и линий связи

    2. сведения о предложенной нагрузке сети, то есть о потоках трафика, которые сеть должна передать между своими пограничными коммутаторами

    Пусть производительность процессора каждого коммутатора достаточна для обслуживания трафика всех его входных интерфейсов, даже если трафик поступает на интерфейс с максимально возможной скоростью, равной пропускной способности интерфейса. Поэтому при резервировании ресурсов будем считать ресурсами пропускную способность линий связи между коммутаторами, которая определяет также пропускную способность двух интерфейсов, связанных этой линией.

    Каждый поток характеризуется точкой входа в сеть, точкой выхода из сети и профилем трафика. Для получения оптимальных решений можно использовать детальное описание каждого потока, например, учитывать величину возможной пульсации трафика или требования QoS. Однако поскольку количественно оценить их влияние на работу сети достаточно сложно, а влияние этих параметров на характеристики QoS менее значимо, то для нахождения субоптимального распределения путей прохождения потоков через сеть, как правило, учитываются только их средние скорости передачи данных.

    Методы инжиниринга трафика чаще применяют не к отдельным, а к агрегированным потокам, которые являются объединением нескольких потоков. Так как мы ищем общий маршрут для нескольких потоков, то агрегировать можно только потоки, имеющих общие точки входа в сеть и выхода из сети. Агрегированное задание потоков позволяет упростить задачу выбора путей, так как при индивидуальном рассмотрении каждого пользовательского потока промежуточные коммутаторы должны хранить слишком большие объемы информации, поскольку индивидуальных потоков может быть очень много. Необходимо, однако, подчеркнуть, что агрегирование отдельных потоков в один возможно только в том случае, когда все потоки, составляющие агрегированный поток, предъявляют одни и те же требования к качеству обслуживания. Далее в этом разделе мы будем для краткости пользоваться термином «поток» как для индивидуального потока, так и для агрегированного, поскольку принципы ТЕ от этого не меняются.

    Задача ТЕ состоит в определении маршрутов прохождения потоков трафика через сеть, то есть для каждого потока требуется найти точную последовательность промежуточных коммутаторов и их интерфейсов. При этом маршруты должны быть такими, чтобы все ресурсы сети были нагружены до максимально возможного уровня, а каждый поток получал требуемое качество обслуживания.

    Максимальный уровень использования ресурсов выбирается таким образом, чтобы механизмы управления перегрузкой могли обеспечить требуемое качество обслуживания. Это означает, что для эластичного трафика максимальное значение выбирается не больше, чем 0,9, а для чувствительного к задержкам трафика —не больше, чем 0,5. Так как обычно резервирование производится не для всех потоков, то нужно оставить часть пропускной способности для свободного использования. Поэтому приведенные максимальные значения обычно уменьшают до 0,75 и 0,25 соответственно. Для упрощения рассуждений мы будем считать далее, что в сети передается один вид трафика, а потом покажем, как обобщить методы ТЕ для случая трафика нескольких типов.

    В результате методы инжиниринга трафика сегодня используются только в сетях с виртуальными каналами, для которых не составляет труда реализовать найденное решение для группы потоков. Каждому потоку (или группе потоков с одинаковыми маршрутами) выделяется виртуальный канал, который прокладывается в соответствии с выбранным маршрутом. Методы инжиниринга трафика успешно применяются в сетях ATM и Frame Relay, работающих на основе техники виртуальных каналов. IP-сети также опираются на методы ТЕ, когда те используются в сетях ATM или Frame Relay, работающих в составной сети, построенной на основе протокола IP. Существует также сравнительно новая техно­ логия MPLS, которая разработана специально в качестве средства привнесения техники виртуальных каналов в IP-сети. На основе технологии MPLS в IP-сетях можно также решать задачи ТЕ.

    Работа в недогруженном режиме

    Как мы уже отмечали, самым простым способом обеспечения требований QoS для всех потоков является работа сети в недогруженном режиме, или же с избыточной пропускной способностью.

    Сеть имеет избыточную пропускную способность, когда все части сети в любой момент времени обладают такой пропускной способностью, которой достаточно, чтобы обслужить все потоки трафика, протекающего в это время через сеть, с удовлетворительными характеристиками производительности и надежности. Другими словами, ни одно из сетевых устройств такой сети никогда не подвергается перегрузкам, которые могли бы привести к значительным задержкам или потерям пакетов из-за переполнения очередей пакетов (конечно, это не исключает случаев потерь сетью пакетов по другим причинам, не связанным с перегрузкой сети, например, из-за искажений сигналов на линиях связи либо отказов сетевых узлов или линий связи).

    Простота этого подхода является его главным достоинством, так как он требует только увеличения пропускной способности линий связи и, соответственно, производительности коммуникационных устройств сети. Никаких дополнительных усилий по исследованию характеристик потоков сети и конфигурированию дополнительных очередей и механизмов кондиционирования трафика, как в случае применения методов QoS, здесь не требуется.

    Заметим, что определение сети с избыточной пропускной способностью было намеренно упрощено, чтобы передать суть идеи. Более точное определение должно учитывать случайный характер протекающих в сети процессов и оперировать статистическими определениями событий, то есть говорить, что такие события, как длительные задержки или потери пакетов из-за переполнения очередей в сети с избыточной пропускной способностью, случаются так редко, что ими можно пренебречь. В результате трафик всех приложений в подобной сети переносится с высоким качеством.

    Однако доказать, что сеть действительно является сетью с избыточной пропускной способностью, на практике достаточно трудно. Только постоянное измерение времен доставки пакетов всем конечным узлам сети может показать, что сеть удовлетворяет данному описанию.

    Однако мониторинг задержек и их вариаций является тонкой и трудоемкой работой. Обычно операторы, которые хотят поддерживать свою сеть в недогруженном состоянии и за счет этого обеспечивать высокое качество обслуживания, поступают проще —они осуществляют мониторинг уровня трафика в линиях связи сети, то есть измеряют коэффициент использования пропускной способности линий связи. При этом линия связи считается недогруженной, если ее коэффициент использования постоянно не превосходит некоторый достаточно низкий уровень, например 10 %. Имея такие значения измерений, можно считать, что линия в среднем не испытывает перегрузок, а значит, задержки пакетов будут низкими —мы знаем о такой зависимости между коэффициентом загрузки ресурса и задержками из теории массового обслуживания.

    Однако даже столь низкие значения загрузки не исключают появления на линии кратковременных пульсаций трафика, способных приводить к повышению пиковой скорости трафика до величины пропускной способности линии и, следовательно, к значительным задержкам или потерям небольшого количества пакетов. Для некоторых типов приложений такие потери могут быть весьма чувствительными.

    Многие средства мониторинга скорости трафика, особенно встроенные в коммутаторы и маршрутизаторы, измеряют скорость трафика, усредняя ее на слишком длинных интервалах. В результате такие средства мониторинга просто не способны зарегистрировать кратковременные пульсации трафика и часто дают слишком оптимистичную оценку загруженности сети.

    Для более достоверной оценки состояния сети нужно дополнять мониторинг загрузки линий связи сети хотя бы выборочным мониторингом характеристик QoS, таких как задержки, вариации задержек и потери пакетов. В этом случае можно с большей уверенностью говорить о том, что сеть действительно является сетью с избыточной пропускной способностью, которая гарантирует всем типам трафика качественное обслуживание. Кроме того, выборочный мониторинг характеристик QoS может помочь в определении предела загрузки линий, служащего для оценки их недогруженности.

    Выводы

    Качество обслуживания в его узком смысле фокусирует внимание на характеристиках и методах передачи трафика через очереди коммуникационных устройств. Методы обеспечения качества обслуживания занимают сегодня важное место в семействе технологий сетей с коммутацией пакетов, так как без их применения сложно обеспечить качественную работу современных мультимедийных приложений, таких как IP-телефония, видео- и радиовещание, интерактивное дистанционное обучение.

    Характеристики QoS отражают отрицательные последствия пребывания пакетов в очередях, которые проявляются в снижении скорости передачи, задержках пакетов и их потерях.

    Существуют различные типы трафика, отличающиеся чувствительностью к задержкам и потерям пакетов. Наиболее грубая классификация трафика разделяет его на два класса: трафик реального времени (чувствительный к задержкам) и эластичный трафик (нечувствительный к задержкам в широких пределах).

    Методы QoS основаны на перераспределении имеющейся пропускной способности линий связи между трафиком различного типа в соответствии с требованиями приложений.

    Методы инжиниринга трафика состоят в выборе рациональных маршрутов прохождения потоков че­ рез сеть. Выбор маршрутов обеспечивает максимизацию загрузки ресурсов сети при одновременном соблюдении необходимых гарантий в отношении параметров качества обслуживания трафика.

    Недогруженная сеть (она же сеть с избыточной пропускной способностью) может обеспечить качественное обслуживание трафика всех типов без применения методов QoS; однако для того чтобы убедиться, что сеть действительно недогружена, требуется постоянно проводить мониторинг уровней загрузки линий связи сети, выполняя измерения с достаточно высокой частотой.

    Список использованной литературы

    1. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. — СПб.: Питер, 2010. — 944 с

    2. Гребешков, А.Ю. Вычислительная техника, сети и телекоммуникации.: Учебное пособие для вузов. / А.Ю. Гребешков. - М.: ГЛТ , 2016. - 190 c.

    3. Гусева, А.И. Вычислительные системы, сети и телекоммуникации: Учебник / А.И. Гусева. - М.: Академия, 2016. - 336 c.








    написать администратору сайта