СС. Практические работы _Системы счисления_. Методическая разработка предназначена для студентов 1 курса очной формы обучения. Содержит практические работы с инструкциями по их выполнению, набор упражнений для самостоятельного изучения материала.
Скачать 180.5 Kb.
|
Пример 3. Перевести десятичную дробь 0,562510 в двоичную систему счисления.
Получаем: 0,562510=0,10012 Пример 4. Перевести в двоичную систему счисления десятичную дробь 0,710.
. . . Очевидно, что этот процесс может продолжаться бесконечно, давая все новые и новые знаки в изображении двоичного эквивалента числа 0,710. Так, за четыре шага мы получаем число 0,10112, а за семь шагов число 0,10110012, которое является более точным представлением числа 0,710 в двоичной системе счисления, и т.д. Такой бесконечный процесс обрывают на некотором шаге, когда считают, что получена требуемая точность представления числа. Перевод произвольных чисел Перевод произвольных чисел, т.е. чисел, содержащих целую и дробную части, осуществляется в два этапа. Отдельно переводится целая часть, отдельно — дробная. В итоговой записи полученного числа целая часть отделяется от дробной запятой (точкой). Пример 1. Перевести число 17,2510 в двоичную систему счисления.
Получаем: 17,2510=1001,012 Пример 2. Перевести число 124,2510 в восьмеричную систему.
Получаем: 124,2510=174,28 Перевод чисел из системы счисления с основанием 2 в систему счисления с основанием 2n и обратно Перевод целых чисел. Если основание q-ичной системы счисления является степенью числа 2, то перевод чисел из q-ичной системы счисления в 2-ичную и обратно можно проводить по более простым правилам. Для того, чтобы целое двоичное число записать в системе счисления с основанием q=2n, нужно: 1. Двоичное число разбить справа налево на группы по n цифр в каждой. 2. Если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов. 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n. Пример 1. Число 1011000010001100102 переведем в восьмеричную систему счисления. Разбиваем число справа налево на триады и под каждой из них записываем соответствующую восьмеричную цифру:
Получаем восьмеричное представление исходного числа: 5410628. Пример 2. Число 10000000001111100001112 переведем в шестнадцатеричную систему счисления. Разбиваем число справа налево на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:
Получаем шестнадцатеричное представление исходного числа: 200F8716. Перевод дробных чисел. Для того, чтобы дробное двоичное число записать в системе счисления с основанием q=2n, нужно: 1. Двоичное число разбить слева направо на группы по n цифр в каждой. 2. Если в последней правой группе окажется меньше n разрядов, то ее надо дополнить справа нулями до нужного числа разрядов. 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n. Пример 3. Число 0,101100012 переведем в восьмеричную систему счисления. Разбиваем число слева направо на триады и под каждой из них записываем соответствующую восьмеричную цифру:
Получаем восьмеричное представление исходного числа: 0,5428. Пример 4. Число 0,1000000000112 переведем в шестнадцатеричную систему счисления. Разбиваем число слева направо на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:
Получаем шестнадцатеричное представление исходного числа: 0,80316 Перевод произвольных чисел. Для того, чтобы произвольное двоичное число записать в системе счисления с основанием q=2n, нужно: 1. Целую часть данного двоичного числа разбить справа налево, а дробную — слева направо на группы по n цифр в каждой. 2. Если в последних левой и/или правой группах окажется меньше n разрядов, то их надо дополнить слева и/или справа нулями до нужного числа разрядов; 3. Рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой в системе счисления с основанием q=2n Пример 5. Число 111100101,01112 переведем в восьмеричную систему счисления. Разбиваем целую и дробную части числа на триады и под каждой из них записываем соответствующую восьмеричную цифру:
Получаем восьмеричное представление исходного числа: 745,348. Пример 6. Число 11101001000,110100102 переведем в шестнадцатеричную систему счисления. Разбиваем целую и дробную части числа на тетрады и под каждой из них записываем соответствующую шестнадцатеричную цифру:
Получаем шестнадцатеричное представление исходного числа: 748,D216. Перевод чисел из систем счисления с основанием q=2n в двоичную систему. Для того, чтобы произвольное число, записанное в системе счисления с основанием q=2n, перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-значным эквивалентом в двоичной системе счисления. Пример 7. Переведем шестнадцатеричное число 4АС3516 в двоичную систему счисления. В соответствии с алгоритмом:
Получаем: 10010101100001101012. Задания для самостоятельного выполнения 1. Заполните таблицу, в каждой строке которой одно и то же целое число должно быть записано в различных системах счисления.
2. Заполните таблицу, в каждой строке которой одно и то же дробное число должно быть записано в различных системах счисления.
3. Заполните таблицу, в каждой строке которой одно и то же произвольное число (число может содержать как целую, так и дробную часть) должно быть записано в различных системах счисления.
Практическая работа № 2. |