Главная страница

Определение очага пожара. Методические рекомендации по определению очага пожара и изъятию вещественных доказательств с места пожара


Скачать 56.94 Kb.
НазваниеМетодические рекомендации по определению очага пожара и изъятию вещественных доказательств с места пожара
Дата21.02.2022
Размер56.94 Kb.
Формат файлаdocx
Имя файлаОпределение очага пожара.docx
ТипМетодические рекомендации
#368629
страница3 из 3
1   2   3

Параллельно в протоколе осмотра места происшествия отмечается, какие проводники изъяты, в каком месте, и делаются необходимые фотоснимки. К протоколу осмотра должна быть приложена электрическая схема, на которой указывается место изъятия проводников. Если вещественные доказательства изымались при раскопках пожарища и невозможно установить при осмотре, каким именно элементом схемы является данный проводник, следует отметить место его изъятия на плане помещения, здания или сооружения.

При назначении исследований (экспертиз), связанных с исследованием металлических проводников, помимо вещественных доказательств необходимо представлять следующие материалы:

- электрическую схему объекта с указаниями, какими элементами ее являются представленные на исследование проводники (желательно);

- план объекта с указанием на нем мест изъятия проводников, места предполагаемого очага пожара, места ввода электроэнергии на объект.

Исследование проводников со следами оплавлений.

Методика ВНИИ МВД СССР от 1986 года “Исследование медных и алюминиевых проводников в зонах короткого замыкания и термического воздействия” делится (состоит) из 5 этапов:

1. Визуальный осмотр.

2. Морфологический анализ.

3. Рентгеноструктурный анализ (РСА).

4. Металлографический анализ (МГА);

5. Анализ металлических проводников на углерод.

Основные понятия. Под первичным коротким замыканием (ПКЗ) понимается КЗ, которое происходит в отсутствие воздействия на проводник опасных факторов пожара при нормальной (комнатной) температуре окружающей среды и нормальном составе атмосферы (21% кислорода, 79% азота). Под вторичным коротким замыканием (ВКЗ) понимается КЗ, которое происходит в процессе развития пожара при повышенной температуре окружающей среды (2000С и более), достаточной для начала интенсивного термического разложения изоляции и в атмосфере, насыщенной газообразными продуктами разложения горючих веществ (СО, СО2, Н2 и др.) при пониженном содержании кислорода. В основу исследования положен принцип повышения достоверности вывода о моменте возникновения КЗ при сохранении образцов – вещественных доказательств. Например, визуальный осмотр, морфологические исследования и рентгеноструктурный анализ выполняются без разрушения образцов (проводников). Металлографический анализ сопровождается частичным разрушением, а газовый – полным уничтожением проводника.

1. В настоящее время на базе Вологодской ИПЛ проводятся исследования медных проводников в три этапа: визуальный осмотр, рентгеноструктурный анализ, металлографический анализ, что вполне достаточно, чтобы определить природу образования оплавлений на проводниках.

а). В процессе визуального осмотра необходимо определить и указать в описании вещественных доказательств:

- сечение и длину кабельных изделий;

- количество жил и проволок в жиле;

- состояние изоляции;

- при наличии изоляции – материал и марку кабельного изделия;

- при наличии оплавлений – характер оплавлений, изменение сечения проводников по длине.

Основной задачей визуального осмотра является отбор образцов для дальнейших исследований инструментальными методами. Для определения причины оплавления (от пожара или КЗ), а также и первичности и вторичности КЗ, исследуют характер оплавления, изменение сечения проводников по длине и состояние изоляции. Для проводников, оплавленных в результате термического воздействия пожара, характерны значительные изменения сечения по длине проводника и протяженная зона оплавления произвольной формы (см. фото 2). Фото 2. При КЗ оплавления носят локальный характер и имеют округлую форму, вид косого среза или кратера. Сечение проводника может изменяться вблизи места оплавления на небольшом участке см. фото 3; 4. При наличии изоляции в результате термического воздействия пожара наблюдается обугливание и оплавление ее наружной поверхности, тогда как при КЗ изоляция обуглена изнутри. Характер оплавлений и состояние изоляции могут в свою очередь указывать на ПКЗ или ВКЗ. В частности, наличие на поверхности оплавления газовых раковин и пор свидетельствует о ВКЗ, в тоже время, при ПКЗ данные признаки отсутствуют. Фото 3 Фото 4. Наличие изоляции, обугленной изнутри, является признаками ПКЗ. Если оплавленный участок медного проводника вытянут вдоль его оси и поверхность вблизи оплавления гладкая, это свидетельствует о ПКЗ. В свою очередь произвольная ориентация оплавленного участка оси проводника и наличие на поверхности проводника, вблизи оплавления, небольших шаровидных наплывов, являются признаками ВКЗ. б). Рентгеноструктурный (фазовый) анализ медных проводников (РСА). С помощью рентгеноструктурного анализа исследуются открыто проложенные провода без металлической оплетки с медными жилами. Метод рентгеноструктурного фазового анализа медных проводников основывается на следующих положениях. Известно, что медь обладает высоким сродством к кислороду. При ПКЗ по длине проводника возникает градиент температур. В месте оплавления достигается температура расплавленной меди 10830С и выше. На поверхности при этом интенсивно образуется закись меди по реакции 2Сu2О = Cu2О+1/2О2, равновесие которой сдвинуто вправо при температуре выше 8000 С. По мере удаления от места оплавления температурное влияние дуги КЗ ослабевает, и содержание закиси меди на поверхности уменьшается. На расстоянии 25-30 мм от места оплавления содержание закиси меди в поверхностном слое соответствует содержанию в исходном проводнике. В то же время содержание Cu2О в поверхностном слое на участке, примыкающем к оплавлению, остается достаточно высоким, несмотря на то, что этот участок не подвергается непосредственному воздействию дуги короткого замыкания. При ВКЗ в условиях реального пожара в задымленной атмосфере содержатся продукты неполного сгорания органики в частности СО. В этом случае при КЗ происходит восстановление закиси меди в месте оплавления по реакции Cu2О+СО = 2Сu2+CO2. Если КЗ предшествовал интенсивный нагрев в условиях незначительного задымления, то на поверхности проводника образуется окисный слой. Поскольку ВКЗ приводит к восстановлению окисных фаз только на поверхности места оплавления и в прилегающем участке, поверхностное содержание окисных фаз на этих участках будет значительно ниже, чем в отстоящем участке. Если КЗ произошло сразу же вслед за разрушением изоляции, и проводники предварительно не подвергались термическому воздействию, то в окислительной среде окисные фазы отсутствуют и в оплавленном (примыкающем), и в отстоящем участках. Важным фактором является термическое воздействие после КЗ. В условиях реального пожара нагрев возможен в окислительной среде (отсутствие газов-восстановителей) и в восстановительной среде (в атмосфере продуктов неполного сгорания). Термическое воздействие в окислительной атмосфере при температуре 900 0 С и более в течение 30 и более минут приводит к равномерному окислению поверхности медной жилы по всей длине, и дифференцирующие признаки уничтожаются. Нагрев в восстановительной атмосфере при температуре 9000С и более в течение 30 и более минут приводит к восстановлению окисной пленки по всей длине жилы и также уничтожает дифференцирующие признаки. При проведении РСА используется прибор дифрактометр рентгеновский «Радиан ДР-01». Исследуются два участка у медного проводника: на расстоянии 5 мм от оплавления и на расстоянии 25-30 мм от оплавления. Затем полученные дифрактограммы сравниваются путем определения площадей пиков и отношения между ними. По полученному значению определяют режим, при котором образовалось оплавление. в). Металлографический анализ (МГА) медных проводников. Для исследования микроструктуры металлических проводников в месте оплавления изготовляется микрошлиф. Для приготовления микрошлифа от проводника со следами воздействия дуги КЗ отрезается участок с оплавлением на конце протяженностью 10-15 мм. Затем производится обработка места оплавления на шлифовальном станке, примерно, до половины его сечения. Для выявления микроструктуры место шлифа подвергается химическому травлению специальными реактивами. Изучение микроструктуры производится на металлографическом микроскопе МИМ-8 в белом свете при увеличении 224*. Для наглядности полученных при исследовании результатов, изображения микроструктур мест оплавлений проводников фиксируются на фотопленку, а фотоснимки прилагаются к заключениям. Причины, способствующие возникновению короткого замыкания и искрообразованию: 1. Коррозия металла, покрывающего или изолирующего проводник. 2. Закрытые выпускные отверстия в соединительных коробках или отсутствие в них контактов. 3. Коррозия крепления проводки или его отсутствие. 4. Наличие проводников в системе открытой проводки, освобожденных от крепления и оказавшихся в контакте между собой, с металлическими и деревянными изделиями или другими проводящими или горючими материалами. 5. Разрушение изоляции проводника в условиях эксплуатации под влиянием механических и тепловых воздействий, увлажнения и действия агрессивной среды. 6. Наличие мест соединения, имеющих недостаточный контакт между собой. 7. Наличие не восстановленной на место временно нарушенной электропроводки. Способы отбора проб (вещественных доказательств) с признаками наличия легковоспламеняющихся нефтепродуктов (ЛВНП), горючих жидкостей (ГЖ) и ГСМ. ЛВЖ и ГЖ являются одним из основных средств совершения умышленных поджогов. Поэтому для подтверждения или опровержения данной версии первоочередной задачей работников дознания является выявление и изъятие вещественных доказательств. Нахождение остатков нефтепродуктов наиболее вероятно в зоне очага пожара, поэтому их поиски необходимо начать с внешнего осмотра. Внешними признаками выгорания горючей жидкости является образование на полу, конструкциях, предметах характерных пятен, участков обгорания с резко очерченной конфигурацией. При возникновении пожаров и взрывов от жидкого горючего его следы могут обнаруживаться на элементах деревянных конструкций, обратной стороне меблировки и внутри ее, покрытии пола, в щелях и трещинах, позади плинтусов, в пазах, между ступеньками и под ступенями на лестницах, на отделке помещения, подушках, матрацах, в воде, образовавшейся при тушении пожара. В углублениях, щелях (между половицами) образуются более глубокие прогары, чем на мебели, в том числе мягкой мебели. Если жидкое горючее попало, например, на обивочный материал дивана или кушетки, то следы его могут находится за обугленной поверхностью. Последняя способна защитить горючее от действия огня. То же возможно в щелях, за плинтусами. Следы также могут обнаруживаться на земле в результате просачивания под пол помещения, в котором произошел пожар. В большинстве случаев интенсивное тепловое воздействие приводит к очень быстрой потере остатков ГЖ, следовательно, на реальном развившемся пожаре следы ЛВЖ и ГЖ следует искать в местах, подвергавшихся минимальному тепловому воздействию. Таковыми местами являются: - полы зданий; идеальным местом для сохранения остатков ЛВЖ и ГЖ на пожаре являются внутренние поверхности конструкций деревянных полов (чернового пола), а также трещины, пазы и другие углубления. Если пол в зоне очага пожара завален золой и обгоревшими предметами, необходимо предварительно произвести их раскопку и разборку, обращая внимание на наличие каких-либо стеклянных сосудов и их осколки, пластмассовые и металлические емкости и т.п. - различные ткани; они прекрасно впитывают нефтепродукты (особенно легковоспламеняющиеся) и сохраняют их остатки, несмотря на то, что сами воспламеняются и обгорают в значительной степени. - грунт; длительное время может сохранять разлившиеся (просочившиеся) легковоспламеняющиеся нефтепродукты, так как оказывает нейтрализующее действие на пламя. 1. Отбор проб ЛВЖ и ГЖ. Вещественные доказательства в виде остатков различных нефтепродуктов (напр.: капли и лужицы) могут быть собраны шприцем, стеклянными капиллярными трубками. В отсутствии вышеуказанных предметов, для отбора проб нефтепродуктов могут быть использованы ватные тампоны или фильтровальная бумага. Поскольку большинство нефтепродуктов обладают большой летучестью, то отобранные вещественные доказательства лучше всего помещать в чистые стеклянные сосуды с притертыми пробками и заливать их для герметичности парафинов или воском. Не допускается использование пробок из резины для закрытия стеклянной емкости с веществами (например, нефтепродуктами), разъедающими ее. В случае обнаружения на месте пожара остатков ГЖ в бутылках, их следует закупорить чистыми полиэтиленовыми или корковыми пробками, если остатки горючей жидкости обнаружены в таре, которую трудно герметизировать (банка, бидон, деформированная или разбитая емкость и т.п.), жидкость нужно перелить в чистую стеклянную емкость или пробирку с пробкой. Если остатки жидкости, обнаруженные на полу или другой поверхности, не успели впитаться или испариться, их необходимо собрать чистой ватой (марлей, тряпкой, фильтровальной бумагой) и поместить в такую же посуду. Для отбора горючей жидкости в качестве вещественного доказательства, нельзя применять бутылки из пластика, а для закупорки тары резиновые пробки. 2. Отбор проб древесины. Если древесина не имеет дефектов (сучков, трещин, сколов) следует отобрать пробу древесины с поверхности на глубину не более 1 мм., при помощи ножа или стамески. Особое внимание при отборе проб следует уделять трещинам и сучкам, высверливая или вырубая их на всю глубину и отбирая стружку или щепки. ЛВЖ и ГЖ или их остатки на торцевой поверхности вдоль волокон изымаются с торцевой части длиной 9-10 см., способом спила или отруба. Стружку следует снимать в наиболее вероятных для наличия нефтепродуктов участках древесины, отбирая пробы с не обугленной стороны. В случаях, когда нефтепродукт успел впитаться в древесину, необходимо вырезать (выпилить) его образцы с пятнами жидкости. Например диффузия бензина А-76 в сосновую доску за 2 часа составляет 0,2-0,4 мм. Аналогичной способностью обладает керосин. С торца доски проникновение нефтепродуктов происходит на глубину 80-90 мм. Когда нефтепродукт успел стечь или просочиться, то его следы можно обнаружить под первичными обугленными деревянными конструкциями (например под подоконниками нефтепродукты могут скапливаться на венцах сруба, мхе или пакле). Необходимо помнить, что участки древесины, подвергшиеся температурному воздействию, иными словами обуглились, фрагментов ЛВЖ и ГЖ не содержат. 3. Отбор проб грунта. Отбор проб грунта на предмет наличия нефтепродуктов рекомендуется производить на глубине 20-30 мм ниже его прокаленного слоя при помощи лопаты, шпателя или широкого ножа. Во всех случаях отбора образцов для анализа надо брать контрольные образцы того же материала, не содержащие следов пропитки. Ввиду того, что некоторые виды нефтепродуктов имеют свойство стекать, просачиваться, то целесообразно отбирать пробы грунта у основания очагового “конуса” возле наружных стен зданий, под дощатыми настилами и несгораемыми покрытиями. 4. Отбор проб тканей. В отличие от древесины отбор проб тканей не вызывает затруднений. В том случае, если объект изъятия нельзя отправить на исследование (экспертизу), вырезается ножницами участок, на котором обнаружены или предполагается обнаружить следы ЛВЖ или ГЖ. На исследование, возможно, отбирать и обгоревшие (участки) фрагменты тканей. При отборе проб с мягкой мебели целесообразно отбирать также пробы материала, находящегося под обивкой (поролон, ватин и др.). Пробы грунта, древесины, тканей и других материалов (кроме ЛВЖ и ГЖ) допускается упаковывать в полиэтиленовую пленку, желательно в несколько целлофановых пакетов. Упаковка и транспортировка изъятых вещественных доказательств должна обеспечивать их полную сохранность и исключить возможность утраты характерных признаков и качеств. Упакованные предметы опечатываются, снабжаются надписью, содержащей наименование предмета, место его обнаружения, дату изъятия, должность и фамилию изъявшего. Исследование представленных вещественных доказательств на ЛВЖ и ГЖ. Сравнительно недавно в лабораторию поступил прибор хроматограф «Кристаллюкс-4000М». При помощи данного прибора определяют наличие следов ЛВЖ и ГЖ в отобранных пробах грунта, фрагментах различных материалов методом газожидкостной хроматографии. Данный метод не является экспрессным (полевым) и соответственно требует значительного количества времени и расходных материалов. В виду того, что прибор поступил недавно, по нему создается информационная база для проведения исследования по определению ЛВЖ и ГЖ, поэтому на данный момент времени в 2009 году, исследования на хроматографе будут проводиться только для создания базы данных. Исследование пожаров на автомобилях Анализ пожаров, происходящих на автомобилях, показывает, что наиболее часто к таким пожарам приводят следующие процессы: - неисправность топливной и электрической систем автомобиля (вытекание топлива, КЗ, искрение, повреждение проводки); - поджоги. Реже пожары возникают в следствие: - нарушения герметичности гидравлического оборудования (течи и воспламенение гидравлической жидкости); - неисправностей (прогаров) выпускной системы двигателя. Совсем редко причиной пожара являются перегрев отопителей и другие аварийные режимы. Распределение пожаров по месту возникновения (т. е. по очагу) при испытании новых легковых автомобилей следующее: - моторный отсек — 43,3 %; - кабина или салон — 20,0 %; - кузов или багажник — 7,8 %; - элементы ходовой части — 3,0 %; - выпускная система - 5,6 %; - другие места - 20,3 %. Как известно, для возникновения горения необходимо чтобы в очаговой зоне присутствовали три материальных фактора: - горючее вещество или материал; - источник зажигания, способный поджечь это вещество (материал); - окислитель. Окислителем при загорании автомобилей (как и при большинстве обычных пожаров) является кислород воздуха; а вот пожарная нагрузка и источники зажигания достаточно специфичны и их следует рассмотреть особо. Потенциальные источники зажигания, имеющиеся в автомобиле, можно разделить на 3 группы. 1. Система электропитания Несмотря на то, что в бортовой сети автомобиля напряжение составляет 12 В, в ней возможно возникновение тех же пожароопасных режимов, что и в обычной электросети, — коротких замыканий (КЗ), больших переходных сопротивлений (БПС), искрений, перегрузки. 2. Нагретые поверхности В работающем автомобиле (автобусе) имеется две зоны максимальных температур: моторный отсек; зона выпускного тракта от коллектора до выхлопной трубы глушителя. В двигателе внутреннего сгорания температура отработанных газов по длине выпускного тракта составляет 800-830 °С, а температура поверхностей 710-770 °С. Понятно, что это очень высокая температура, она выше температуры самовоспламенения большинства горючесмазочных материалов, используемых в автомобиле. 3. Возможно появление в автомобиле и источников зажигания постороннего происхождения — это источники зажигания малой мощности (тлеющие табачные изделия) и источники открытого огня (при поджоге). Направленность и динамика развития горения в легковом автомобиле Определенные представления о динамике развития горения в легковом автомобиле дают данные Исследовательского центра "Мюнхен-Исманинг" (Германия). Специалисты этого центра провели серию экспериментов, результаты которых представлены на рис. 15.1. Рис. 15.1. Динамика развития горения в легковом автомобиле (данные исследовательского центра "Мюнхен-Исманинг " (Германия)): а, б, в - автомобили с передним расположением двигателя; г - автомобили с задним расположением двигателя В первых двух опытах моделировалось воспламенение карбюратора на автомобиле с передним расположением двигателя (рис. 15.1 а, 6). Через 8-10 мин после начала эксперимента горение из моторного отсека проникало в салон и происходило воспламенение приборного щитка. Еще через 1-3 мин воспламенялся весь салон, а еще через 5 мин фронт пламени достигал заднего бампера. Если воспламенению карбюратора предшествовал разлив в подкапотном пространстве 2 л бензина (рис. 15.1, в), то время выхода горения в салон сокращалось до 5 мин. В автомобиле с задним расположением двигателя ("Фольксваген", рис. 15.1, г) огонь доходит до приборного щитка за 7,5 мин, а весь автомобиль оказывается охвачен пламенем за 20 мин. Другая серия экспериментов была проведена в нашей стране сотрудниками ВИПТШ. Пожар моделировался в автомобиле "Жигули", очаг располагался на заднем сидении. Через 6 мин после начала горения произошло разрушение остекления салона; через 30 мин загорелись моторный и багажный отсеки; через 46 мин пламенное горение закончилось, наблюдалось только тление сидений, шин. Загорание легкового автомобиля от внешнего источника тепла (пламени деревянного строения) происходит, по данным специалистов ВИПТШ, в следующем порядке: - внешний слой краски; - резиновые уплотнения стекол; - шины; - внутренний слой краски; - материалы салона; - моторный и багажный отсеки. Знать и учитывать такую последовательность загорания важно при установлении очага и причины пожара (см. далее). Отметим также, что горение в салоне при внешнем источнике тепла начинается после разрушения стекол и продолжается около 30 мин. Моторный и багажный отсеки загораются от салона. Загорание отдельных элементов автомобиля при тепловом потоке 25 кВт/м2 происходит в течение 1-2 мин. При непосредственном воздействии пламени загорание лакокрасочного покрытия, шин, разрушение стекол происходит в течение 0,5-1,0 мин. Экспертные возможности при исследовании пожара на автомобиле. Установление очага пожара Как и на любом другом объекте, на транспортном средстве первым этапом работы по установлению причины пожара является определение места его возникновения, т. е. очага пожара. На легковом автомобиле установление очага пожара начинается с выполнения "программы-минимум" - выявления зоны наибольших термических поражений в одном из трех отсеков: - моторном отсеке; - салоне; - багажнике. Не всегда, но на большинстве пожаров в автомобилях сравнительный анализ этих трех зон дает возможность выявить наиболее пострадавшую. Делается это путем визуального осмотра автомобиля. Если очаг пожара находится в салоне, то последний выгорает обычно очень сильно, крыша деформируется; моторный отсек и багажник могут частично или полностью обгореть, закоптиться, но при этом сохраняются относительно лучше, нежели салон. Если очаг расположен в моторном отсеке, то в нем обычно наблюдаются сильные сосредоточенные поражения, выгорание резиновых изделий, прокладок, расплавление силуминовых деталей, у автомобилей с передним расположением двигателя чаще всего выгорают передние колеса, но лучше сохраняются задние. Горение может перейти в салон, салон выгорит, но багажник, особенно на периферийных участках, пострадает меньше. При нахождении очага пожара в багажнике обычно выгорают багажник, салон, моторный же отсек только закоптится, но более сильные поражения (в том числе расплавления) в нем возникают редко. Конечно, перечисленные признаки сохраняются не всегда, машина, особенно если ее не тушили, может выгореть и до стального остова. Тем не менее, попытаться дифференцировать три указанные зоны путем визуального осмотра обязательно надо. Дополнительную информацию об очаге может дать осмотр электропроводки автомобиля. Установление причины пожара. Осмотр электросети и выявление признаков ее причастности к возникновению пожара Отработка версии причастности к возникновению пожара аварийного режима в электросети проводится по следующим этапам: 1. Осматриваются предохранители автомобиля (выясняется, какие из них перегорели, какие целые). Если автомобиль загорелся на стоянке, то надо выяснить, есть ли в нем выключатель массы, и если есть, то в каком положении он находится (включено, выключено). Будет очень неудобно, если пожарный специалист будет настаивать на "электротехнической версии", а потом выяснится, что машина была обесточена. 2. Устанавливается, есть ли дуговые оплавления на проводах. Если есть, то желательно выяснить, к какой электрической цепи относится провод с оплавлениями. Особенно важно выяснить, относится провод к штатной электросети автомобиля или он принадлежит системе охранной сигнализации. Если оплавлений несколько, то сопоставив их местонахождение со схемой электропитания автомобиля, надо определить оплавление, которое, как мы отметили выше, наиболее удалено от генератора (аккумулятора). 3. Дуговые оплавления, в первую очередь наиболее удаленное от источника питания, следует изъять и отправить на исследование в целях определения первичности (вторичности) КЗ. Правила изъятия автомобильных проводов те же, что и обычной электропроводки. И исследуются провода теми же методами — металлографией и рентгеноструктурным анализом. Анализ версии воспламенения топлива при утечке Как отмечалось выше, утечка топлива в автомобиле может являться причиной пожара. Действительно, температура выпускного тракта автомобиля 710-770 °С, а температура самовоспламенения бензина — 573 °С, дизтоплива — 623 °С, моторного масла — 613 °С. Казалось бы, при их попадании на горячие трубы коллектора воспламенение неизбежно. Но оно возможно только при определенных условиях. По данным специалистов ВИПТШ (Исхаков Х.И. и др. Пожарная безопасность автомобиля. — М.: Транспорт, 1987), бензин, действительно, воспламеняется при истечении на нагретую поверхность (в экспериментах ее температура составляла 290-310 °С), но только при струйном истечении, при скорости более 50-60 г/с. При попадании на нагретую поверхность отдельных капель они просто интенсивно испаряются и топливо не воспламеняется. Установлено, что при частоте падения д0 60 капель/мин каждая следующая капля падает практически на сухую поверхность. Конечно, если бы такое испарение происходило в закрытом пространстве, то при достижении концентрации паров выше НКПР могла бы произойти вспышка. Но в автомобиле, к счастью, таких закрытых зон нет, ниша двигателя не герметизирована, продувается воздухом, а потому маловероятно, что концентрация паров топлива сможет достичь опасных значений. Из вышесказанного следует вывод — при случайной или аварийной разгерметизации топливной системы и капельном истечении топлива пожар в автомобиле с карбюраторным двигателем маловероятен. Для возгорания нужно струйное истечение бензина. В отличие от бензина, загорание вытекших жидкостей из гидросистем, масел и дизтоплива при попадании на высоконагретые поверхности двигателя и турбокомпрессора при нарушении герметичности арматуры гидросистем и маслотопливо-проводов возможно. Это, кстати, основная причина загорания большегрузных автомобилей. Версии загорания протекшего топлива от других источников зажигания, как правило, не рассматриваются. Например, в моторном отсеке автомобиля нет достаточных условий для существования источника статического электричества достаточной мощности. Поэтому воспламенение топлива, вытекающего из поврежденной топливной системы, разрядами статического электричества на обычных автотранспортных средствах маловероятно. Однако это вполне возможно на автозаправщиках, при сливе и заливе автомобильного топлива в автоцистерны и другие емкости. Об отработке такой версии шла речь в предыдущих главах. Воспламенение паров бензина или дизтоплива от искры КЗ теоретически вполне возможно в месте контакта проводов или плюсового провода с кузовом. Но такое развитие событий маловероятно из-за уже отмеченного выше отсутствия в автомобиле застойных зон, где могут скопиться пары ЛВЖ (ГЖ). Просто нагретый в режиме КЗ провод не способен поджечь дизтопливо. Бензин, попадая на нагретую жилу, также не воспламеняется, а интенсивно испаряется (кипит). Прочие версии Возможности возникновения горения в автомобиле не исчерпываются рассмотренными версиями. Существуют и другие источники зажигания и загорающиеся материалы, а также самые необычные ситуации, приводящие к пожару. Рассмотрим некоторые из них, известные из практики расследования пожаров. а) Самовозгорание посторонних материалов В начале 90-х гг. в Санкт-Петербурге на одной из центральных улиц внезапно загорелся остановившийся у светофора микроавтобус "Мерседес". У данного автомобиля двигатель был расположен под кожухом между сидением водителя и передним пассажирским сидением. Водитель рассказал, что в момент остановки перед светофором двигатель он не выключал, последний работал нормально; судя по показаниям приборов, все было нормально и в электросети автобуса. Вдруг из-под кожуха пошел дым, водитель поднял его, чтобы разобраться, что же случилось, а там уже происходило пламенное горение. В результате пожара выгорело примерно 3/4 салона автобуса, место водителя и переднее место пассажира. Очаг пожара, судя по результатам осмотра, действительно, находился где, то в зоне расположения двигателя. Однако исследование самого двигателя, системы его электропитания и других проходящих рядом проводов не выявило каких-либо признаков аварийной работы. Зато между силуминовыми ребрами охлаждения двигателя вдруг обнаружился неизвестный, сильно обгоревший предмет. Выяснилось, что это тряпка. Несмотря на то что автобус был совсем новый, у него в двигателе подкапывало масло. Чтобы оно не попадало в салон, под ноги пассажиру водитель-сменщик подтирал его тряпкой, а тряпку положил под кожух, в оребрение двигателя. И тряпка, пропитанная маслом, загорелась. б) Аварийные режимы в нештатных сервисных устройствах В последние годы в Москве, Санкт-Петербурге и других городах имели место многократные случаи загорания на стоянках новейших импортных автомобилей ("Форд", "Рено" и др.). Происходили они вследствие возникновения аварийных режимов в "нештатных" средствах, которые устанавливали на эти автомобили, — прежде всего системах охранной сигнализации. Многие из них были достаточно совершенными и пожаробезопасными; причиной пожара оказывалось низкое качество и непродуманность монтажа их на автомобилях. Если при осмотре автомобиля после пожара выясняется, что в очаговой зоне находится такого рода устройство или проходят принадлежащие ему провода, причастность данной системы к возникновению пожара требует тщательного анализа. в) Поджог Установление факта поджога автомобиля представляет достаточно сложную проблему. Здесь, учитывая ограниченные размеры объекта и быстрое развитие горения, трудно выявить несколько очагов; не имеет обычно смысла искать в автомобиле и остатки инициатора горения (ЛВЖ, ГЖ). Тем не менее признаки поджога надо попытаться выявить, исходя из предполагаемых способов поджога. Обычно автомобили поджигают самым простым способом, с помощью подручного средства - бензина. В этом случае его могут налить в салон или облить машину снаружи, хотя возможно сочетание и того и другого. В первом случае формируются признаки очага в салоне, и если машина была закрыта, должны быть признаки механического разрушения стекол. При горении бензина на полу салона обгорают коврики — в обычной ситуации они, как правило, сохраняются. Во втором случае, если бензин налили на борта автомобиля и под него, выраженные термические поражения образуются в зонах, где после разлития остался бензин или куда он стек, в том числе по водоотводным канавкам. Часто сильно выгорают колеса, а также покрытие днища автомобиля, если бензин горел под ним. Правда, надо иметь в виду, что выгорание передних колес у некоторых автомобилей возможно и при расположении очага в моторном отсеке, когда из разгерметизированной линии подачи топлива бензин стекает вниз, горит там, в результате чего образуются внешние признаки, будто автомобиль подожгли снизу. Как правило, в автомобиле или на нем (крыше, капоте) сохраняются и остатки тары из-под ЛВЖ (осколки бутылки, оплавленная и не догоревшая полиэтиленовая тара). Западные специалисты по расследованию пожаров, которые обычно имеют дело с поджогами автомобилей в целях получения страховки, отмечают, что признаками такого рода поджогов являются искусственные нарушения системы подачи топлива (ослабленные винтовые соединения, перерезанные трубки) или замыкания проводов на корпус; открытые в непогоду окна и двери машины (устанавливается по положению механизма стеклоподъемников и характеру обгорания торца дверей), а также многие другие "мелочи". К последним относится, например, отсутствие в салоне и багажнике остатков сгоревших вещей, запасного колеса, инструмента и т. д., которые хозяйственный владелец-поджигатель вынимает перед поджогом, чтобы "добро не пропадало". Морфологические признаки на поверхности разрушенных металлических проводников
1   2   3


написать администратору сайта