Главная страница

курсовая. Методические рекомендации по применению составленных задач на уроках математики 9 класса


Скачать 2.32 Mb.
НазваниеМетодические рекомендации по применению составленных задач на уроках математики 9 класса
Анкоркурсовая
Дата30.11.2022
Размер2.32 Mb.
Формат файлаrtf
Имя файла838389.rtf
ТипМетодические рекомендации
#822048
страница2 из 3
1   2   3
рассматривается на основе зависимости площади квадрата от его стороны. Далее авторы предлагают построить график функции по точкам. Для чего составляется таблица значений функции.

Далее описываются некоторые свойства рассматриваемой функции:

График функции проходит через начало координат; все точки графика функции, кроме (0; 0), расположенных выше оси х; точки графика, имеющие противоположные координаты, симметричны относительно оси у.

В заключении данного параграфа дается система упражнений на нахождение по графику функции значения х по заданному значению у и наоборот, на нахождение значения y по заданному значению х.

Также в 7 классе авторы учебника рассматривают абсолютную погрешность, взяв для рассмотрения график функции . По графику определяются приближенные значения функции при заданных значениях х. Затем значения х подставляются в формулу. Получается второй результат. После этого высчитывается погрешность.

В 8 классе работа с квадратичной функцией начинается во второй главе «Квадратные корни».

Учащимся даются понятия: квадратный корень, арифметический квадратный корень, вводится обозначение арифметического квадратного корня и понятие подкоренного выражения.

Авторы подводят учащихся к решению уравнения , где a - произвольное число. Говорится, что если , то уравнение не имеет корней, а вот если , то уравнение имеет два корня. Проверяется наличие корней графическим методом, используя квадратичную функцию.

Далее изучается функция и ее график. Сначала рассматривается задача: зависимость площади квадрата от его стороны. Выводится формула

Построение осуществляется по точкам (точно также как и функция ). Говорится, что графики функций (при ) и симметричны относительно прямой y = x.

В 9 классе данный коллектив авторов рассматривает квадратичную функцию в общем виде. Сначала изучается частный случай квадратичной функции - функция . При получаем функцию , при - . Составляется таблица значений функции и строится ее график. Затем делается вывод, что при любом значение функции больше соответствующего значения функции в 2 раза. График функции можно получить из параболы растяжением от оси х в 2 раза.

Аналогично рассматривается функция . И отсюда следует вывод, что график функции можно получить из параболы сжатием к оси х в 2 раза.

Затем авторы акцентируют свое внимание на то, что график функции можно получить из параболы растяжением от оси х в а раз, если , и сжатием к оси х в раз, если .

Далее аналогично строится график функции и сравнивается с графиком функции . График функции может быть получен из графика функции с помощью симметрии относительно оси х.

Далее авторы, подводя итог, говорят, что графики функций и (при ) симметричны относительно оси х.

В конце этого параграфа говорится, что построение графика, симметричного данному относительно оси х, растяжение графика от оси х или сжатие к оси х - различные виды преобразования графиков функций. Преобразования графиков, рассмотренные для функции , применимы к любой функции.

Система упражнений на закрепление этой темы состоит из упражнений на построение графиков функций.

Затем авторы рассматривают графики функций вида и . В качестве примеров берутся другие частные случаи квадратичной функции.

Далее делается вывод: график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси у на n единиц вверх, если , или на -n единиц вниз, если ; график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси х на m единиц вправо, если , или на -m единиц влево, если .

Полученные выводы позволяют понять, что представляет собой график функции . Рассматривается очередной пример ( ) и после этого делается вывод, что график функции является параболой, которую можно получить из графика функции с помощью двух параллельных переносов. Замечается, что производить параллельные переносы можно в любом порядке: сначала выполнить параллельный перенос вдоль оси х, а затем вдоль оси y или наоборот.

Далее в учебнике рассматривается построение графика квадратичной функции в общем виде. Вводится квадратичная функция и из трехчлена выделяют квадрат двучлена. После некоторых преобразований авторы получают . Получается формула вида , где , . Авторы акцентируют внимание на том, что график функции есть парабола, которую можно получить из графика функции с помощью двух параллельных переносов - сдвига вдоль оси х и сдвига вдоль оси у.

Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров, Н.Е. Федорова, М.И. Шабунин

В 7 классе рассматривается прямоугольная система координат, понятие функции, линейная функция и ее график.

В данном учебнике изучение квадратичной функции начинается в 5 главе после изучения квадратных корней и квадратных уравнений.

Сначала рассматриваются примеры из разных областей науки и техники, где встречаются квадратичные функции.

После этого вводится определение квадратичной функции, и рассматриваются примеры квадратичных функций и задачи.

Найти значение функции при

При каких значениях х квадратичная функция принимает значение, равное 7;

Найти нули функции .

Авторы предлагают решать такие задачи аналитически: подстановкой заданного значения в формулу.

Только после этого начинается рассмотрение непосредственно квадратичной функции, ее некоторых свойств и графика.

Функция вводится как частный случай функции при а=1, b=c=0. Для построения графика этой функции составляется таблица ее значений, строятся указанные в таблице точки, соединяют плавной линией. Кривая, являющаяся графиком функции , называется параболой.

После этого рассматривается функция .

Приводится пример построения графика функции , зная график функции . Для построения составляется таблица значений функции . Говорят, что график функции получается растяжением графика функции от оси Ox вдоль оси Oy в два раза.

Аналогичным образом, на примере, авторы демонстрируют сжатие графика. График функции получается сжатием графика функции к оси Ox вдоль оси Oy в два раза.

Затем рассматриваются функции и . График функции можно получить симметрией относительно оси Ох графика функции .

Далее авторами рассматривается функция . В начале параграфа рассматривается задача: построить график функции и сравнить его с графиком функции .

Как и для функции сначала составляется таблица значений функции . Найденные точки отмечаются на координатной прямой и соединяются плавной линией. Первая часть задачи решена. Далее сравниваются функции и . Сначала преобразуется формула , используя метод выделения полного квадрата. Затем сравниваются графики частями. Сначала - функции и . Отсюда делается вывод, что графиком функции является парабола, полученная из параболы сдвигом (параллельным переносом) вправо на единицу.

После этого сравниваются функции и . Получается, что графиком функции является парабола, полученная сдвигом параболы вверх на две единицы.

Из всего этого следует, что графиком функции является парабола, получаемая сдвигом параболы на единицу вправо и на две единицы вверх.

Далее авторы обобщают ранее объясненное.

Задачи, предлагаемые для закрепления данного материала выглядят так:

. С помощью шаблона параболы построить график функции .

. Записать уравнение параболы, полученной из параболы сдвигом вдоль оси Ох на 3 единицы вправо.

Также в 8 классе решаются квадратные неравенства с помощью графика квадратичной функции. Их решение сводится к отысканию нулей квадратичной функции и промежутков, на которых квадратичная функция принимает положительные или отрицательные значения. В конце дается подробный алгоритм решения неравенств графическим методом.

В качестве дополнительного более сложного материала производится исследование квадратичной функции на основе теорем:

Если , то при всех действительных значениях х знак квадратичной функции совпадает со знаком числа .

Если , то при всех действительных значения х, кроме , знак квадратичной функции совпадает со знаком числа а; при значение квадратичной функции равно нулю.

Если , то знак квадратичной функции совпадает со знаком числа для всех х, лежащих вне отрезка , т. е. при и при , где - нули функции, знак квадратичной функции противоположен знаку числа а при .

Квадратичная функция не рассматривается в 9 классе.

С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин

В 7 классе данный коллектив авторов функцию не рассматривает.

В 8 классе авторы вводят понятие функции, графика функции. После этого рассматриваются линейная, квадратичная функции и обратная пропорциональность.

При изучении квадратичной функции сначала рассматриваются ее свойства.

После формулировки каждого свойства даются пояснения.

Затем рассматривается график функции и определяются ранее обозначенные свойства функции . Также дается определение параболы.

Далее рассматривается понятие квадратного корня, опираясь на график функции .

После этого вводится понятие арифметического квадратного корня из данного неотрицательного числа. Его определение производится по графику функции .

Далее авторы рассматривают функцию . Сравниваются две функции и и делается вывод, что график функции получается из графика функции растяжением последнего в 2 раза вдоль оси Оу. Рассуждая аналогично, можно показать, что график функции , если , получается из графика функции растяжением последнего в а раз вдоль оси у; если же , то сжатием последнего в раз.

Далее рассматривается функция . При этом изучаются 2 функции: сначала , а затем .

Затем авторы рассматривают график функции . Приведена теорема: Графиком квадратичной функции является парабола с вершиной в точке , полученная параллельным переносом параболы , где . Эта теорема приводится с доказательством. На закрепление данного материала учащимся предлагаются задания на построение графика квадратичной функции.

В 9 классе квадратичная функция данным коллективом авторов не рассматривается.

А.Г. Мордкович и др.

В 7 классе квадратичная функция изучается после линейной функции. Поэтому перед ее изучением автор приводит веские аргументы для чего «она нужна». Затем учащимся предлагается подставить в формулу целые числа (-3, -2, -1, 0, 1, 2, 3). Из полученных значений составляется таблица. На координатной плоскости располагают получившиеся точки и соединяют их линией, которая называется параболой.

После этого описываются геометрические свойства параболы (ось симметрии, ветви параболы, вершина параболы) и свойства функции .

Затем рассматриваются примеры применения свойств функции (найдите наибольшее и наименьшее значения функции на отрезке [1, 3]).

В качестве совета, автор предлагает учащимся вырезать из бумаги шаблон параболы.

Система упражнений направлена на построение графика квадратичной функции и определению по нему ее свойств.

В 8 классе продолжается рассмотрение квадратичной функции. В 7 классе изучалась функция . Теперь же учащимся предлагается сначала изучить функцию . Для этого рассматриваются 2 функции и . Составляется таблица значений функций, и строятся графики. Затем делается вывод: от величины коэффициента k зависит «скорость устремления» ветвей параболы вверх или, как еще говорят, «степень крутизны» параболы.

После этого рассматривается функция и сравнивается с функцией . После этого рассмотрения делается общий вывод: График функции симметричен графику функции относительно оси абсцисс.

Затем рассматривается графики функции , и и алгоритмы их построения.

Далее говорится, что график любой квадратичной функции можно получить из параболы параллельным переносом.

Для доказательства этого факта используется метод выделения полного квадрата.

В следующей главе рассматривается функция . Говорится, что ранее было получено, что график функции получается из графика функции с помощью преобразования симметрии относительно оси х. Воспользовавшись этим, строится график функции и отражается симметрично оси х. Это и будет график функции .

Система упражнений состоит из заданий на определение свойств квадратичной функции по ее графику. Также большое внимание уделено преобразованиям графика функций. Имеется достаточно много систем уравнений для графического их решения. Делается акцент на решение задач с параметрами.

В данном учебнике квадратичная функция в 9 классе не рассматривается.

К.С. Муравин, Г.К. Муравин, Г.В. Дорофеев

Изучение квадратичной функции в данном учебнике начинается только в 8 классе и ведется на двух языках - алгебраическом и геометрическом.

На геометрическом языке строится график функции . Говорится также, что построить график «целиком» невозможно, и поэтому строят только такую его часть, которая отражает важнейшие его свойства.

Строится таблица значений функции. Отмечаются полученные точки и соединяются плавной линией. Получившийся график представляет собой бесконечную непрерывную кривую, которая называется параболой.

Затем авторы приводят сравнительную таблицу свойств квадратичной функции на алгебраическом и геометрическом языках.

Далее на основе графика функции рассматривается уравнение .

Также вводится понятие арифметического квадратного корня из числа а и его обозначение.

Система упражнений дана на построение графика функции и отыскание с помощью него точек, которые принадлежат и не принадлежат графику.

В 9 классе данный коллектив авторов функциям выделяет 2 главы.

Вначале рассказывается про квадратичную функцию . Напоминаются основные ранее изученные свойства функции , говорится про ось симметрии, и на этой основе рассматриваются различные квадратичные функции такие, как , и . После каждого из этих примеров делаются выводы о преобразованиях, применимых для графика функции , которые приводят к получению графика заданной функции.

Упражнения, данные после этого параграфа включают в себя:

Постройте график функции:
1) 2) 3) 4)
Изготовьте из картона или плотной бумаги шаблоны парабол:
, , ,
Также имеются контрольные вопросы:

Как получить график функции из графика функции ?

Далее рассматривается функция . Выделяют полный квадрат из выражения и получают функцию , где p и q - некоторые числа.

Приводятся примеры, рассматривается как изменяется график в зависимости от чисел p и q и затем делается вывод, что график функции получается из графика функции сдвигом параллельно оси ординат на q единиц вверх при и на |q| единиц вниз при . Далее говорится, что тем же приемом - сдвигом вдоль осей координат графика произвольной функции можно получить графики функций и . Именно,

График функции получается из графика функции сдвигом параллельно оси абсцисс на p единиц влево при и на -p единиц вправо при .

График функции получается из графика функции сдвигом параллельно оси абсцисс на q единиц вверх при и на -q единиц вниз при .

Изучение квадратичной функции в проанализированных учебниках начинается в 7 (Ю.Н. Макарычев и др., А.Г. Мордкович и др.) и 8 (С.М. Никольский и др., Ш.А. Алимов и др., Г.В. Дорофеев и др.) классах. В учебниках А.Г. Мордковича и др., Ю.Н. Макарычева и др., Ш.А. Алимова и др. изложение материала ведется доступным языком. Прослеживается нить «от простого к сложному». В остальных же учебниках теоретический материал изложен на более научном уровне. Во всех учебниках рассматриваются приложения квадратичной функции (решение уравнений, неравенств, систем уравнений, построение графиков функций, задачи с параметрами). Отличие лишь в том, какое внимание уделяется тому или иному разделу. Задачи с параметрами наиболее ярко отражены только в учебнике А.Г. Мордковича и др.

В учебнике Г.В. Дорофеева и др. изучение квадратичной функции ведется в 8 и 9 классах на двух языках - алгебраическом и геометрическом. Уделяется большое внимание преобразованиям графиков функций. Вся теория изложена «строго по делу», без отступлений.

В учебниках А.Г. Мордковича и др. функциональная линия является ведущей. Автор выделяет в системе упражнений по изучению того или иного класса функций инвариантное ядро, универсальное для любого класса функций, которое состоит из шести направлений:

графическое решение уравнений;

отыскание наибольшего и наименьшего значений функции на заданном промежутке;

преобразование графиков;

функциональная символика;

кусочная функция;

чтение графика.

Это шесть элементов, с помощью которых, функция становится привлекательной, понятной и привычной [22].

В учебнике Ш.А. Алимова и др. квадратичной функции и ее приложениям посвящен практически весь учебник 8 класса. Блоком рассматривается квадратичная функция и ее свойства, и затем квадратные неравенства и задачи с параметрами, решаемые с помощью построения графика квадратичной функции.

В учебнике Ю.Н. Макарычева определение квадратичной функции дается в 9 классе предлагается учащимся сразу, затем рассматриваются частные случаи квадратичной функции и после непосредственно общий вид квадратичной функции. Только после этого авторы обращают внимание на решение квадратных уравнений и систем уравнений (в частности, графический метод), опираясь на свойства квадратичной функции. Задачам с параметрами уделяется крайне мало внимания.

Рассмотрим, сколько практико-ориентированных задач имеются в следующих учебниках 9 класса:


Авторы

Количество часов по теме «Квадратичные функции»

Количество практико-ориентированных задач

Г. В. Дорофеев и др.

20 часов

№ 180, 192, 255, 256.

Ю. Н. Макарычев и др.

29 часов

Рассматривается задача с использованием физических свойств в начале изучения темы, как пример.

Н. Я. Виленкин и др.

25 часов

Рассматривается задача с использованием физических свойств, как пример.


Из рассмотренных учебников мы можем убедиться, что задач практико-ориентированных очень мало и в основном они рассматриваются как примеры.


1   2   3


написать администратору сайта