Главная страница
Навигация по странице:

  • дуги

  • борозды большого пальца, косая и поперечная.

  • Изучение хромосомного набора Может проводиться двумя способами: 1) прямым методом

  • Запомните! Рисунок каждой пары хромосом при дифференциальной окраске специфичен по числу, положению и размерам окрашенных сегментов. FISH-метод окраски хромосом

  • Экспресс-метод определения полового хроматина

  • 7.4. Самостоятельная работа студентов под контролем преподавателя.

  • 2. Анализ кариотипа у больных с хромосомными болезнями (по фотографиям)

  • 3.Лабораторная работа 1. Проведение дактилоскопического анализа

  • методичка биология. Методические указания для студентов составлены зав кафедры биологии, профессором д м. н. Викторовой Т. В. и ассистентом, к б. н. Измайловой С. М


    Скачать 6.06 Mb.
    НазваниеМетодические указания для студентов составлены зав кафедры биологии, профессором д м. н. Викторовой Т. В. и ассистентом, к б. н. Измайловой С. М
    Анкорметодичка биология.doc
    Дата04.06.2018
    Размер6.06 Mb.
    Формат файлаdoc
    Имя файламетодичка биология.doc
    ТипМетодические указания
    #19974
    страница6 из 8
    1   2   3   4   5   6   7   8


    Папиллярные гребни на различных участках гребешковой кожи образуют узоры разного типа и ориентации. Узоры изучают на отпечатках, сделанных на бумаге, после нанесения на кожу типографской

    краски. На пальцевых подушечках имеются узоры трех типов: дуги (А - arch), петли (L - loop) и завитки (W - whorl).

    Для большинства узоров характерна дельта (трирадиус) - место схождения трех разнонаправленных папиллярных линий. Дуга представляет собой открытый, бездельтовый узор; петля - замкнутый с одной стороны, однодельтовый узор; завиток - полностью замкнутый, двухдельтовый узор. Иногда встречаются комбинированные сложные узоры. Количественным показателем узора является гребневый счет - число папиллярных линий между дельтой и центром узора. Гребневый счет дугового узора равен нулю. Узоры, аналогичные пальцевым, имеются и на ладонях - в области тенора и гипотенора и на II, III, IV и V межпальцевых промежутках.

    В межпальцевых промежутках имеются трирадиусы (a, b, c, d), а вблизи браслетной складки, расположен главный ладонный трирадиус t. Если соединить трирадиусы a, d и t, то получим главный ладонный угол atd, который в норме не превышает 57°. На ладони различают три главные флексорные (сгибательные) борозды: борозды большого пальца, косая и поперечная. Иногда косая борозда сливается с поперечной в одну четырехпальцевую борозду (ЧПБ). Частота ее встречаемости в норме не превышает 5%. Совокупность радиальных петель на IV и V пальцах, четырехпальцевой борозды и главного ладонного угла свыше 60°-80° свидетельствует о врожденной компоненте наследственного заболевания.
    2. Цитогенетический метод в исследовании генетики человека
    Среди многих методов изучения наследственной патологии человека цитогенетический метод занимает существенное место. С помощью цитогенетического метода возможен анализ материальных основ наследственности и кариотипа человека в норме и патологии, изучение некоторых закономерностей мутационного и эволюционного процессов.
    Методы цитогенетического анализа:

    1. Изучение хромосомного набора (кариотипа) в делящихся клетках.

    2. Экспресс-метод определения полового хроматина в ядрах интерфазных клеток.




    1. Изучение хромосомного набора


    Может проводиться двумя способами:
    1) прямым методом - исследование метафазных хромосом в делящихся клетках, например, костного мозга (используется редко, в основном при новообразованиях крови), фибробластов кожи, ворсинчатой оболочки хориона (используется для анализа кариотипа плода на самых ранних сроках беременности).

    б) непрямым методом - исследование метафазных хромосом в неделящихся в норме, но стимулированных к делению клетках. Это наиболее широко распространенный метод цитогенетического анализа, позволяющий анализировать кариотип в легко доступных клетках (периферическая кровь, клетки различных тканей и др.).

    Проведение цитогенетического анализа хромосом непрямым методом осуществляется в несколько этапов:

    1. Культивирование клеток периферической крови на искусственных питательных средах с добавлением фитогемагглютинина (ФГА) – стимулятора митотического деления клеток. В норме лимфоциты (ядерные клетки) периферической крови, как правило, не делятся, находясь в стадии покоя (интерфазы). Под действием ФГА происходит их иммунологическая трансформация и они начинают активно делится.

    2. Добавление в среду культивирования колхицина для разрушения нитей веретена деления и остановки митоза на стадии метафазы, когда наблюдается максимальная степень конденсации (спирализации) хромосом.

    3. Обработка клеток гипотоническим раствором хлорида натрия, вследствие чего мембрана клеток лопается и хромосомные наборы каждой клетки (пластинки) свободно лежат в плазме крови.

    4. Окрашивание хромосом рутинным методом или методом дифференциальной окраски (см. ниже), в результате чего хромосомы становятся хорошо различимыми при микроскопировании.

    5. Анализ кариотипа после зарисовки хромосом. В настоящее время используются современные микроскопы, способные выводить с помощью ряда компьютерных программ изображение на монитор компьютера для последующего анализа.


    В случае рутинной (равномерной) окраски для окрашивания препаратов хромосом используются основные красители (азур-эозин, краситель Романовского-Гимзы, основной фуксин, орсеин и др.). После рутинной окраски хромосомы можно распределить по группам (от А до G) в соответствии с международной Денверской классификацией. Денверская классификация хромосом позволяет проанализировать общее число хромосом, определить их принадлежность к той или иной группе, а также выявить грубые хромосомные нарушения (поломки, перемещения участков хромосом, нетипичные конфигурации и др.).

    Для более точного анализа хромосом используются методы дифференциального окрашивания, которые позволяют идентифицировать хромосомы внутри определенной группы. При дифференциальном окрашивании каждая пара хромосом имеет свой строго специфический рисунок! заключающийся в чередовании окрашенных и неокрашенных полос разной толщины. Рисунок дифференциально окрашенных хромосом является специфической характеристикой кариотипа данного вида организмов. Для точной идентификации дифференциально окрашенных хромосом используется Парижская номенклатура.

    С целью получения дифференциальной окраски цитогенетических препаратов применяют специальные красители – флюрохромы в сочетании с основными красителями, использующимися для рутинной окраски.

    Существуют следующие методы дифференциального окрашивания хромосом:

    Самым популярным способом является G-окрашивание - это стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).

    Q-окрашивание - окрашивание акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определения генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом). При Q–окраске число, величина и расположение сегментов в хромосоме аналогично рисунку при G-окраске.

    R-окрашивание – используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. R-сегменты окрашиваются после контролируемой тепловой денатурации. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

    C-окрашивание - применяется для анализа околоцентромерных районов хромосом, содержащих конститутивный гетерохроматин, а также дистальной части Y-хромосомы.
    Запомните! Рисунок каждой пары хромосом при дифференциальной окраске специфичен по числу, положению и размерам окрашенных сегментов.
    FISH-метод окраски хромосом
    Метод FISH-окраски (fluorescent in situ hybridization) разработан в Ливерморской национальной лаборатории (США) в 1986 г. Это принципиально новый метод изучения хромосом – метод флюоросцентного выявления ДНК путем гибридизации in situ со специфическими молекулярными зондами. Метод основан на способности хромосомной ДНК связываться при определенных условиях с фрагментами ДНК (ДНК-зондами), которые включают нуклеотидные последовательности комплементарные хромосомной ДНК. ДНК-зонды предварительно метят специальными веществами (например, биотином или дигоксигенином). Меченные ДНК-зонды наносят на цитогенетические препараты подготовленных для гибридизации метафазных хромосом. После того как произошла гибридизация, препараты обрабатывают специальными флюросцентными красителями, конъюгированными с веществами, способными избирательно присоединяться к биотину или дигоксигенину. Каждая хромосома имеет специфическую окраску. Гибридизация может проводиться также с зондами меченными радиоактивной меткой. Цитогенетический анализ проводится под люминесцентным микроскопом в ультрафиолетовом свете.

    FISH-метод используется для выявление мелких делеций и транслокаций. Хромосомные обмены (транслокации и дицентрики) между разноокрашенными хромосомами легко определяются как разноцветные структуры.


    1. Экспресс-метод определения полового хроматина


    Метод заключается в анализе X-полового хроматина в интерфазных ядрах клеток слизистой оболочки полости рта. Для выявления полового хроматина клетки окрашиваются с применением основных красителей (орсеин, краситель Романовского-Гимзы и др.).
    7.4. Самостоятельная работа студентов под контролем преподавателя.
    Практическая работа
    1. Просмотр демонстрационного препарата «Кариотип человека» в цитогенетической лаборатории
    При увеличении Х90 в поле зрения видны лейкоциты, которые имеют округлую форму, компактное округлой формы темноокрашенное ядро, окруженное широким ободком светлоголубой цитоплазмы. Среди них найдите хромосомы, лежащие вне клеток в виде скопления – метафазная пластинка. Найдите метацентрические, субметацентрические и акроцентрические хромосомы.
    2. Анализ кариотипа у больных с хромосомными болезнями (по фотографиям)
    № 1. трисомия по 13 хромосоме (синдром Патау). Кариотип 47, +13.

    № 2. трисомия по 18 хромосоме (синдром Эдвардса). Кариотип 47, +18.

    № 3. трисомия по 21 хромосоме (болезнь Дауна). Кариотип 47, +21.

    № 4. делеция короткого плеча одной из хромосом 5 пары (синдром «кошачьего крика»). Кариотип 46, 5р-

    № 5. полисомия Х-хромосомы у женщин. Кариотип: 47, ХХХ или 48, ХХХХ

    № 6. полисомия Х-хромосомы у мужчин (синдром Клайнфельтера). Кариотип: 47, ХХУ, 48, ХХХУ –

    № 7. моносомия по Х-хромосоме (синдром Шершевского – Тернера). Кариотип: 45, ХО.
    Разобрать с преподавателем механизм возникновения транслокационной формы болезни Дауна (кариотип 46, 15+21).
    3.Лабораторная работа
    1. Проведение дактилоскопического анализа
    Для изготовления собственных отпечатков пальцев необходимо следующее оборудование: фотографический каток, стекло площадью 20х20 см2, кусок поролона, типографская краска (или аналогичный материал), листы бумаги, ручная лупа (не менее 10 см в диаметре).
    Метод приготовления отпечатков пальцев
    На стекло наносят небольшое количество краски и тщательно раскатывают катком до тонкого равномерного слоя. Пальцы испытуемого поочередно прижимаются к стеклу, а затем прикладываются к бумаге, под которой лежит поролон. Палец ставится на ребро радиальной стороны и поворачивается так, чтобы отпечаталась вся поверхность пальцевой подушечки, вплоть до его ульнарной стороны. Поднимать палец надо осторожно, чтобы не сместить бумагу и не смазать рисунок. На листках подписывают фамилию, пол и возраст. Далее производится определение рисунка узора на каждом пальце левой и правой руки, записывается формула каждой из рук. Рассчитывается показатель TRG по двум индексам из предложенных выше, и определяется дельтовый показатель.

    Таблица




    Пальцы


    I

    II

    III

    IV

    V

    Всего

    Правая рука



















    Левая рука



















    1   2   3   4   5   6   7   8


    написать администратору сайта