Главная страница
Навигация по странице:

  • 3.1 Проводниковые материалы Задача № 3.1.1

  • Рисунок 1 Задача № 3.1.2

  • 3.2 Полупроводниковые материалы Задача № 3.2.1

  • Задача № 3.2.7

  • 3. 3 Диэлектрические материалы Задача № 3.3.1

  • Задача № 3.3.6

  • Задача № 3.3.8

  • Задача № 3.3.10

  • Задача № 3.3.12

  • Задача № 3.3.16

  • Задача № 3.3.25

  • Задача № 3.3.27

  • 3.4 Магнитные материалы Задача № 3.4.1

  • МУ по М и К ЭТ для ФЗО скоорект. Методические указания по их выполнению по курсу Материалы и компоненты электронной техники


    Скачать 0.56 Mb.
    НазваниеМетодические указания по их выполнению по курсу Материалы и компоненты электронной техники
    Дата23.06.2022
    Размер0.56 Mb.
    Формат файлаdocx
    Имя файлаМУ по М и К ЭТ для ФЗО скоорект.docx
    ТипМетодические указания
    #612370
    страница3 из 13
    1   2   3   4   5   6   7   8   9   ...   13


    3. Задачи контрольного задания



    3.1 Проводниковые материалы
    Задача № 3.1.1

    Пленочный резистор состоит из трех участков, имеющих различные сопротивления квадрата пленки R1=10 Ом; R2=20 Ом; R3=30 Ом. Определить сопротивление резистора.



    Рисунок 1


    Задача № 3.1.2

    Вычислить падение напряжения на полностью включенном реостате, изготовленном из константановой проволоки длиной 10 м, при плотности тока 5 А/мм2. Удельное сопротивление константана принять равным 0,5 мкОм·м.

    Задача № 3.1.3

    Сопротивление вольфрамовой нити электрической лампочки при 20°С составляет 35 Ом. Определить температуру нити лампочки, если известно, что при ее включении в сеть напряжением 220 в установившемся режиме по нити проходит ток 0.6 А. температурный коэффициент удельного сопротивления вольфрама при 20°С можно принять равным 0,005 К-1
    Задача № 3.1.4

    Определить дину нихромовой проволоки диаметром 0,5 мм, используемой для изготовления нагревательного устройства с сопротивлением 20 Ом при температуре 1000 °С, полагая, что при 20°С параметры нихрома: удельное сопротивление 1 мкОм∙м, температурный коэффициент удельного сопротивления 0,00015 К-1, температурный коэффициент линейного расширения 0,000015 К-1.
    Задача № 3.1.5

    Медный и алюминиевый провода равной дины имеют одинаковые сопротивления. Определить отношение диаметров этих проводов. Вычислить, во сколько раз масса алюминиевого провода меньше массы медного провода.
    Задача № 3.1.6

    Определить температуру, до которой нагреется алюминиевый провод сечением 15 мм2, длиной 1000 м, если по нему течет ток 40А и падает напряжение 225 В.
    Задача № 3.1.7

    Определить падение напряжения в медной линии электропередач длиной 50 км при 50°С , сечением 10 мм2и по нему течет ток 60 А

    .

    Задача № 3.1.8

    Определить длину проволоки из нихрома марки Х20Н80 для намотки проволочного резистора с номиналом 1 кОм , и допустимой мощностью рассеяния 10Вт. Принять параметры материала при 20°С : плотность тока 0,8 А/мм2, удельное сопротивление 1,05 мкОм∙м

    3.2 Полупроводниковые материалы
    Задача № 3.2.1
    Вычиcлить собственную концентрацию носителей заряда в кремнии при

    Т=300 К, если ширина его запрещенной зоны ΔW=1,12 эВ, а эффективные

    массы плотности соcтояний mc=1,05m0, mv=0,56m0.
    Задача №3.2.2

    В собственном германии ширина запрещенной зоны при температуре 300 К равна 0,665 эВ. На сколько надо повысить температуру, чтобы число электронов в зоне проводимости увеличилось в два раза? Температурным изменением эффективной плотности состояний для электронов и дырок при расчете пренебречь.

    Задача 3.2.3

    Почему для изготовления большинства полупроводниковых приборов требуются монокристаллические материалы и не могут быть использованы поликристаллические образцы?

    Задача № 3.2.4

    Определить (качественно), как будет изменяться время жизни дырок в кремнии n-типа при повышении температуры от комнатной до температуры, при которой наступает собственная электропроводность.

    Задача № 3.2.5

    Чем можно объяснить, что многие полупроводниковые соединения группы АIIВVI проявляют электропроводность лишь одного типа, независимо от характера легирования?

    Задача № 3.2.6

    При легировании полупроводника донорными примесями время жизни неосновных носителей заряда уменьшилось в пять раз, а их подвижность снизилась на 30%. Определить, на сколько изменилась диффузионная длина дырок при легировании полупроводника по сравнению с нелегированным материалом.

    Задача № 3.2.7

    С какой целью производят выращивание эпитаксиальных слоев кремния на монокристаллических подложках при изготовлении интегральных схем?

    Задача № 3.2.8

    Определить, как изменится концентрация электронов в арсениде галлия, легированном цинком до концентрации NZn=1022м-3, при повышении температуры от 300 К до 500 К. Полагать, что при 300 К все атомы цинка полностью ионизированы.

    Задача № 3.2.9

    Каким типом электропроводности обладают полупроводники типа АIIIВV, легированные атомами элементов IV группы Периодической таблицы элементов?

    Задача № 3.2.10

    По истечении времени t1=10-4 c после прекращения генерации электронно-дырочных пар, равномерной по объему полупроводника, избыточная концентрация носителей заряда оказалась в 10 раз больше, чем в момент t2=10-3 с. Определить время жизни неравновесных носителей заряда, считая его постоянным, не зависимым от интенсивности возбуждения.
    Задача № 3.2.11

    Рассчитайте массу легирующей добавки мышьяка, которую необходимо ввести в пластину кремния объемом 100 мм3, чтобы при равномерном распределении примеси удельное сопротивление кристалла была равно 0,01 Ом·м. Подвижность электронов принять равной 0,12 м2/(В·с).

    Задача № 3.2.12

    Объясните, почему при одинаковом содержании легирующих примесей поликристаллический кремний обладает гораздо более высоким удельным сопротивлением, чем монокристаллический материал.

    3. 3 Диэлектрические материалы
    Задача № 3.3.1

    В чем различие между ионной и ионно-релаксационной поляризацией? Что характеризует время релаксации и от каких факторов оно зависит?
    Задача № 3.3.2

    Капельки воды находятся во взвешенном состоянии в трансформаторном масле. Что с ними произойдет, если масло поместить в постоянное электрическое поле?
    Задача № 3.3.3

    При напряжении 2 кВ плоский конденсатор, изготовленный из высокочастотного диэлектрика, имеет заряд 3,5×10-8 Кл. При этом же напряжении и при повышении температуры на 100 К заряд возрастает на 1%. Определить диэлектрическую проницаемость материала и температурный коэффициент диэлектрической проницаемости, если толщина диэлектрика между пластинами конденсатора h=2 мм, а площадь каждой пластины S= 5 см2. Какой вывод можно сделать о наиболее вероятном механизме поляризации данного диэлектрика?
    Задача № 3.3.4

    Что делают с обкладками высоковольтного конденсатора после выключения приложенного к нему напряжения во избежание опасности для человека? Объясните, какие процессы в диэлектрике создают эту опасность?
    Задача № 3.3.5

    В каких единицах выражают удельное объемное и удельное поверхностное сопротивления диэлектриков? Дайте определения этих физических величин. Почему их экспериментальное определение рекомендуют проводить при постоянном, и не при переменном напряжении, а также через 1мин после подачи напряжения на диэлектрик?

    Задача № 3.3.6

    При каких условиях для электроизоляционных материалов соблюдается закон Ома?

    Задача № 3.3.7

    Для определения природы носителей заряда в ионном диэлектрике был использован метод Тубандта. При этом были изготовлены три таблетки исследуемого диэлектрика, на две из которых с одной стороны были нанесены электроды. Каждая таблетка была тщательно взвешена, затем все таблетки были сложены, и через них в течение длительного времени пропускали постоянный ток. При полярности приложенного напряжения, указанной на рис.2, масса второй таблетки осталась неизменной, масса первой таблетки увеличилась, а масса третьей уменьшилась. Определить вид электропроводности данного диэлектрика и знак носителей заряда.


    Рисунок 2

    Задача № 3.3.8

    В каком случае массы всех трех таблеток в опыте Тубандта (см.предыдущую задачу) останутся неизменными?
    Задача № 3.3.9

    Почему диэлектрические свойства газа не характеризуют значением удельного электрического сопротивления?
    Задача № 3.3.10

    Чему равна активная мощность рассеяния в кабеле с сопротивлением изоляции 20 Мом при постоянном напряжении 20 В?


    Задача № 3.3.11

    Как влияет температура на положение частотного максимума тангенса угла релаксационных потерь?

    Задача № 3.3.12

    Почему электрическая прочность твердых диэлектриков больше, чем жидких, а жидких - больше, чем газообразных?
    Задача № 3.3.13

    Электрическая проницаемость непропитанной конденсаторной бумаги и конденсаторного масла соответственно равна 35 и 20 кВ/мм. После пропитки бумаги конденсаторным маслом ее электрическая прочность возросла до 50 кВ/мм. Почему электрическая прочность пропитанной бумаги больше, чем электрические прочности непропитанной бумаги и пропитывающего диэлектрика?
    Задача № 3.3.14

    Одинаково ли будет изменяться пробивное напряжение воздуха, если производить его нагревание: а) при постоянном давлении; б) при постоянном объеме.
    Задача № 3.3.15

    Чем отличается пробой газа в однородном и неоднородном электрических полях? Каким образом в газе можно создать однородное поле? Почему при увеличении расстояния между электродами пробивное напряжение газа в однородном поле возрастает?
    Задача № 3.3.16

    Почему более толстые слои диэлектриков, как правило, имеют меньшую электрическую прочность?
    Задача № 3.3.17

    Для трех диэлектрических материалов при испытаниях в однородном электрическом поле получены приведенные на рисунке 3 зависимости пробивного напряжения от толщины. Построить (качественно) в одной системе координат зависимости электрической прочности этих материалов от толщины.



    Рисунок 3

    Задача № 3.3.18

    Известно, что при тепловом пробое диэлектрик толщиной 4 мм пробивается при напряжении 15 кВ на частоте 100 Гц. При каком напряжении промышленной частоты пробьется такой же диэлектрик толщиной 2 мм?
    Задача № 3.3.19

    Для керамического опорного изолятора расчетным путем получены значения пробивного напряжения в функции от температуры окружающей среды отдельно для теплового пробоя (кривая 1 на рисунке 4) и для электрического пробоя (прямая 2). Чему равно пробивное напряжение этого изолятора и какой вид пробоя будет наблюдаться при температуре: а) T1; б) T2?



    Рисунок 4
    Задача № 3.3.20

    Как и почему изменится пробивное напряжение воздуха при нормальном атмосферном давлении, если температуру повысить от 20 до 100°С?
    Задача № 3.3.21

    Что является количественной мерой диэлектрической анизотропии нематических жидких кристаллов? В каких веществах она положительна, а в каких отрицательна?
    Задача № 3.3.22

    Изобразите и поясните зависимость светопропускания жидкокристаллической электрооптической ячейки, обладающей «твист»- эффектом, от напряжения для случая, когда она заключена между двумя скрещенными поляроидами.
    Задача № 3.3.23

    В каких материалах и в каких условиях проявляются нелинейные оптические эффекты? Приведите примеры практического использования нелинейности оптических свойств кристаллических диэлектриков.
    Задача № 3.3.24

    Почему ситаллы и силикатные стекла одинакового химического состава обладают разными электрическими, механическими и теплофизическими свойствами?
    Задача № 3.3.25

    Почему для изоляции обмоточных проводов трансформаторов и электродвигателей используют термореактивные, а не термопластичные лаки?
    Задача № 3.3.26

    Что понимают под линейными и нелинейными, полярными и неполярными диэлектриками? Какие из перечисленных видов диэлектриков могут быть использованы на высоких частотах?

    Задача № 3.3.27

    На каких принципах основано создание термостабильной конденсаторной керамики?

    Задача № 3.3.28

    Керамический конденсатор емкостью 1,5 нФ при комнатной температуре имеет температурный коэффициент емкости ɑс= -750·10-6К-1. Изобразите (качественно) температурные зависимости емкости и ɑс этого конденсатора. Чему будет равна его емкость при температуре T= -40°С?


    3.4 Магнитные материалы
    Задача № 3.4.1
    Почему диамагнетики намагничиваются противоположно направлению вектора напряженности внешнего магнитного поля? Как влияет температура на диамагнитную восприимчивость?

    3.4.2.

    К какому классу веществ по магнитным свойствам относятся полупроводники кремний и германий, химические соединения АIIIВV?
    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта