Главная страница

методическое пособие. Методическое пособие. Методическое пособие по дисциплине Математика по теме Применение математических методов в медицине


Скачать 29.81 Kb.
НазваниеМетодическое пособие по дисциплине Математика по теме Применение математических методов в медицине
Анкорметодическое пособие
Дата16.03.2023
Размер29.81 Kb.
Формат файлаdocx
Имя файлаМетодическое пособие.docx
ТипМетодическое пособие
#994736


Методическое пособие

по дисциплине «Математика»

по теме: «Применение математических методов в медицине»

для специальностей 060501 Сестринское дело

060101 Лечебное дело

060102

Методическое пособие написано в помощь студентам при изучении темы «Применение математических методов в профессиональной деятельности медицинского работника».

Содержание учебного пособия соответствует рабочей программе по математике. Изложение теоретического материала сопровождается большим количеством примеров и задач. В конце приводятся задания для самостоятельной работы.

Пособие предназначено для студентов медицинских колледжей и училищ.

СОДЕРЖАНИЕ:

1. Пояснительная записка…………………………………………….3

2. Области применения математических методов в медицине и
биологии…………………………………………………………….4

3. Определение и нахождение процента…………………………....7

4. Меры объема……………………………………………………....8

5. Концентрация растворов………………………………………….10

6. Понятие пропорций…………………………………………….....11

7. Антропометрические индексы……………………………………13

8. Математические вычисления в предметах «Акушерство» и
«Гинекология»…………………………………………………......15

9. Математические вычисления в предмете «Педиатрия»…………16

10. Математические вычисления в предметах «Сестринское дело»
и «Фармакология»………………………………………………...19

11. Задачи для самостоятельного решения…………………………..28

12. Тестовые задания…………………………………………………..31

13. Литература........................................................................................

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методическое пособие составлено в соответствии с Государственным образовательным стандартом среднего профессионального образования

Учебное пособие состоит из нескольких разделов

Каждый раздел имеет краткую теоретическую часть, упражнения для практических занятий. Учитывая профессиональную направленность курса математики, приведены примеры и предложены задачи по дисциплинам фармакологии, педиатрии, основ сестринского дела, акушерства.

Это способствует воспитанию у студентов уверенности в профессиональной значимости изучаемого предмета, студенты видят практическое применение математических методов в медицине и биологии.

По итогам изучения темы студент должен:

знать:

 определение процента;

 меры объема;

 концентрацию растворов;

 понятие пропорций,
уметь:

 составлять и решать пропорции;

 рассчитывать концентрацию растворов;

 получать нужную концентрацию раствора;

оценивать пропорциональность развития ребенка, используя антропометрические индексы;

 вычислять долженствующую длину, массу, окружность груди и головы ребенка в зависимости от возраста;

 рассчитывать количество молока объемным и калорийным методами, применять вышеизложенные формулы на практике.

5
ОБЛАСТИ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКИХ МЕТОДОВ

В МЕДИЦИНЕ И БИОЛОГИИ.

Различные конкретные математические методы применяются к таким областям биологии и медицины, как таксономия, экология, теория эпидемий, генетика, медицинская диагностика и организация медицинской службы.

В том числе методы классификации в применении к задачам биологической систематики и медицинской диагностики, модели генетического сцепления, распространения эпидемии и роста численности популяции, использованию методов исследования операций в организационных вопросах, связанных с медицинским обслуживанием,

Пользуются также математические модели для таких биологических и физиологических явлений, в которых вероятностные аспекты играют подчиненную роль и которые связаны с аппаратом теории управления или эвристического программирования.

Существенно, важен вопрос о том, в каких областях применимы математические методы. Потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей как искусство и этика. Мы несколько конкретнее рассмотрим области применения математики в биологии и медицине.

До сих пор мы имели в виду главным образом те медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых более общих целей. Эту область довольно расплывчато называют исследованием операций. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с медициной. 6
В медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор. Пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностей статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов.

Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение

Простейшее исследование повторяющихся эпидемий вероятностными методами показывает, что такого рода математическое описание позволяет в общих чертах объяснить важное свойство таких эпидемий - периодическое возникновение вспышек примерно одинаковой интенсивности, тогда как детерминистская модель дает ряд затухающих колебаний, что не согласуется с наблюдаемыми явлениями. При желании разработать более детальные, реалистические модели мутаций у бактерий или повторяющихся эпидемий эта информация, полученная с помощью предварительных упрощенных моделей, будет иметь очень большую ценность. В конечном счете, успех всего направления научных исследований определяется возможностями моделей, построенных для объяснения и предсказания реальных наблюдений.

Одно из больших преимуществ, правильно построенной математической модели состоит в том, что она дает довольно точное описание структуры исследуемого процесса. С одной стороны, это позволяет осуществлять ее практическую проверку с помощью соответствующих физических, химических или биологических экспериментов. С другой стороны, математический анализ образом, чтобы в ней с самого начала была предусмотрена соответствующая статистическая обработка данных.

Разумеется, множество глубоких биологических и медицинских исследований было успешно выполнено без особого внимания к 7
статистическим тонкостям. Но во многих случаях планирование эксперимента, предусматривающее достаточное использование статистики, значительно повышает эффективность работы и обеспечивает получение большего объема информации о большем числе факторов при меньшем числе наблюдений. В противном случае эксперимент может оказаться неэффективным и неэкономичным и даже привести к неверным выводам. В этих случаях новые гипотезы, построенные на таких необоснованных выводах, не смогут выдержать проверку временем.

Отсутствием статистического подхода можно в какой-то мере объяснить периодическое появление "модных" препаратов или метод лечения. Очень часто врачи ухватываются за те или иные новые препараты или методы лечения и начинают широко применять только на основании кажущихся благоприятных результатов, полученных на небольших выборках данных и обусловленных чисто случайными колебаниями. По мере того как у медицинского персонала накапливается опыт применения этих препаратов или методов в больших масштабах, выясняется, что возлагавшиеся, на них надежды не оправдываются. Однако для такой проверки требуется очень много времени и она весьма ненадежна и неэкономична; в большинстве случаев этого можно избежать путем правильно спланированных испытаний на самом начальном этапе.

В настоящее время специалисты в области биоматематики настоятельно рекомендуют применять различные статистические методы при проверке гипотез, оценке параметров, планировании экспериментов и обследований, принятии решений или изучении работы сложных систем. 8
ОПРЕДЕЛЕНИЕ И НАХОЖДЕНИЕ ПРОЦЕНТА

1 Сотая часть числа называется, одним процентом этого числа само число соответствует ста процентам Слово “процентзаменяется символом %

2 Пусть дано число b и требуется найти p% этого числа Это будет число a равное a=p% b/100

Например: Так, 20%числа 18 дают числа а,150 числа 18 - число 6 ,318 2 ,018 100 20      a 27 18 100 150    a

При заработной плате 4000 руб. и подоходном налоге 13 налоговые отчисления в бюджет составят руб. 520 4000 100 13  

3 Если число принимается за 100,то число соответствует , причем b a P

) 2(

Эта формула позволяет находить какой процент составляет от . a b

Например: Так, 2 от 4 составляет , а 12 от 4 составляет . 0 0 50 100 42   0 0 300 100 4 12  

4 Если известно, что число составляет  числа , то само число находятся так a Pb b

) 3(

Например: При ставке налога на прибыль  налоговые отчисления составили 3 млн. руб. Прибыль (до уплаты налога) была равна P

млн. руб. 15 20 100 3    a 9
МЕРЫ ОБЪЕМА.

1литр (л) = 1 куб. дециметру (дм3)

1 куб. дециметр (дм3) = 1000 куб. сантиметрам (см3)

1 куб. метр (м3) = 1000 000 куб. сантиметрам (см3)

1 куб. метр (м3) = 1000 куб. дециметрам (дм3)

1 мг = 0,001 г

1 г = 1000 мг

ДОЛИ ГРАММА

0,1 г – дециграмм

0,01 – сантиграмм

0,001 – миллиграмм (мг)

0,0001 – децимиллиграмм

0,00001 – сантимиллиграмм

0,000001 – миллимиллиграмм или промилли или микрограмм (мкг)

КОЛИЧЕСТВО МЛ В ЛОЖКЕ

1 ст.л. – 15 мл

1 дес.л. – 10 мл

1 ч.л. – 5 мл
КАПЛИ

1 мл водного раствора – 20 капель

1 мл спиртового раствора – 40 капель

1 мл спиртово-эфирного раствора – 60 капель

СТАНДАРТНОЕ РАЗВЕДЕНИЕ АНТИБИОТИКОВ.

100 000 ЕД - 0,5 мл раствора

0,1 гр - 0,5 мл раствора

ОПРЕДЕЛЕНИЕ ЦЕНЫ ДЕЛЕНИЯ ШПРИЦА.

цилиндра делениями ми близлежащидвумя между мл количество делений количество шприца ь вместимост 11
КОНЦЕНТРАЦИЯ РАСТВОРОВ

Разведение антибиотиков

Если растворитель в упаковке не предусмотрен, то при разведении антибиотика на 0,1г (100 000 ЕД) порошка берут 0,5 мл раствора. Таким образом, для разведения:

- 0,2г нужен 1 мл растворителя;

- 0,5г нужно 2,5-3 мл растворителя;

- 1г нужно 5 мл растворителя.
Набор в шприц заданной дозы инсулина.

В 1 мл раствора находится 40 ЕД инсулина, цена деления: в шприце 4 ЕД инсулина в 0,1 мл раствора, в шприце 2 ЕД инсулина в 0,05 мл раствора 12
ПОНЯТИЕ ПРОПОРЦИЙ.

10. Отношение числа х к y называется частное чисел х и y. Записывают или yx y x :

Отношение показывает во сколько раз больше (если ) или какую часть числа составляет число (если ). yx x y y x  y x y x 

20. Пропорцией называется равенство двух отношений, именно
- называют крайними членами пропорции 2 1 , y x

- средними членами пропорции 2 1 , x y

Основное свойство пропорции: произведение крайних членов равно произведению ее средних членов, т.е.

2 1 2 1 x y y x   

Это свойство пропорции позволяет найти неизвестное число пропорции, если три других числа этой пропорции известны.

, , , 2 2 1 1 y x y x   1 2 1 2 x x y y   2 2 1 1 x y x y   1 2 1 2 y y x x  

Из пропорции вытекаютдругие пропорции:

22 11 12 12 21 21 , , xy xy xx yy yy xx   

30 . Чтобы разделить некоторое число пропорционально данным числам (разделить в данном отношении) надо разделить это число на сумму данных чисел и результат умножить на каждое из них.

Например: одна бочка содержит смесь спирта с водой в отношении 2:3, а другая – в отношении 3:8. Поскольку ведер нужно взять из каждой бочки, чтобы составить 10 ведер смеси, в которой спирт и вода были бы в отношении 3:5 13
Решение: пусть из первой бочки взяли ведер, тогда из второй взяли ведер. Первая бочка содержит смесь спирта с водой в отношении 2:3, поэтому в ведрах смеси из первой бочки содержится ведер спирта. Вторая бочка содержит смесь спирта с водой в отношении 3:8, поэтому в ведрах смеси содержится ведер спирта. В десяти ведрах новой смеси спирт и вода находятся в отношении 3:5, поэтому спирта в 10 ведрах новой смеси будет ведер. Имеем уравнение х х  10 х х 52 х  10 ) 10 (11 3 х  4 15 10 83 

4 15 ) 10 (11 3 52    х х

Решив его, находим: . 28 27 1 10 , 28 1 8    х х

Ответ: нужно взять ведер из первой бочки и ведер из второй бочки. 28 1 8 28 27 1 14
АНТРОПОМЕТРИЧЕСКИЕ ИНДЕКСЫ.

Количество пищи грудного ребенка в сутки рассчитывают объемным методом: от 2 недель до 2 месяцев – 1/5 массы тела, от 2 месяцев до 4 месяцев – 1/6, от 4 месяцев до 6 месяцев – 1/7. После 6 месяцев – суточный объем составляет не более 1л. Для определения разовой потребности в пище суточный объем пищи делят на число кормлений, Долженствующую массу тела можно определить по формуле:mдолж=mо+ месячные прибавки, где mo – масса при рождении. Месячные прибавки составляют за первый месяц 600 г, за второй – 800 г и каждый последующий месяц на 50 г меньше предыдущего.

Можно рассчитать объем пищи, используя калорийный метод, исходя из потребности ребенка в калориях. В первую четверть года ребенок должен получать 120 ккал/кг, в четвертую – 105 ккал/кг. 1 литр женского молока содержит 700 ккал. Например, ребенок в возрасте 1 месяца имеет массу тела 4 кг и, следовательно, нуждается в 480 ккал/сут. Суточный объем пищи равен 480 ккал х 1000 мл : 700 ккал = 685 мл.

Расчет прибавки массы детей.

Ориентировочно можно рассчитать основные антропометрические показатели. Масса ребенка 1 года жизни равна массе тела ребенка 6 месяцев (8200-8400 г) минус 800 г на каждый недостающий месяц или плюс 400 г на каждый последующий.

Масса детей после года равна массе ребенка в 5 лет (19 кг) минус 2 кг на каждый недостающий год, либо плюс 3кг на каждый последующий.

Расчет прибавки роста детей.

Длина тела до года увеличивается ежемесячно в I квартале на 3-3,5 см, во II – на 2,5 см, в III – 1,5 см, в IV – на 1 см. Длина тела после года равна длине тела в 8 лет (130 см) минус 7 см за каждый недостающий год либо плюс 5 см за каждый превышающий год. 15
Основные показатели ФР можно оценить центильным методом. Он прост, удобен, точен. Стандартные таблицы периодически составляются на основании массовых региональных обследований определенных возрастно-половых групп детей. Используя центильные таблицы можно определить уровень и гармоничность ФР. В срединной зоне (25-75 центили) располагаются средние показатели изучаемого признака. В зонах от 10-й до 25-й центили и от 75-й до 90-й находятся величины, свидетельствующие о нижесреднем или вышесреднем ФР, а в зоне от 3-й до 10-й центили и от 90-й до 97-й – показатели низкого или высокого развития. Величины, находящиеся в более крайних положениях, могут быть связаны с патологическим состоянием. 16
МАТЕМАТИЧЕСКИЕ ВЫЧИСЛЕНИЯ

В ПРЕДМЕТАХ «АКУШЕРСТВО» И «ГИНЕКОЛОГИЯ»

Задача №1: В норме физиологическая потеря в родах составляет 0,5% от массы тела. Определить кровопотерю в мл., если масса женщины 67 кг?

Решение: Воспользуемся формулой (1).

мл х 34 ,0%100% 5,067   

Ответ: Кровопотеря составила 0,34 мл.

Задача № 2: Шоковый индекс равен отношению пульса к систолическому давлению. Определить шоковый индекс, если пульс – 100, а систолическое давление – 80

Решение: для определения шокового индекса необходимо значение пульса разделить на значение систолического давления:

5 ,1280 100 

Ответ: шоковый индекс равен 12,5

Задача № 3: Определите кровопотерю в родах, если она составила 10% ОЦК, при этом ОЦК составляет 5000 мл.

Решение: для определения кровопотери в родах, необходимо найти, сколько составляет 10% от 5000. Для этого воспользуемся формулой (1)

мл 500 5000 100% 10 

Ответ: кровопотеря в родах 500 мл. 17
МАТЕМАТИЧЕСКИЕ ВЫЧИСЛЕНИЯ

В ПРЕДМЕТЕ «ПЕДИАТРИЯ»

Задача № 1: Физиологическая убыль массы новорожденного ребенка в норме до 10%. Ребенок родился с весом 3.500, а на третьи сутки его масса составила 3.300. Вычислить процент потери веса.

Решение: Для решения данной задачей воспользуемся формулой

Потеря веса на третьи сутки составила 3500-3300=200 грамм. Найдем, сколько процентов 200г составляет от 3.500г., для этого воспользуемся формулой (2)

% 7,5100 3500 200  

Ответ: физиологическая убыль массы в норме и составила 5,7%

Задача №2: Вес ребенка при рождении 3300 г., в три месяца его масса составила 4900 г. Определить степень гипотрофии.

Решение: Гипотрофия I степени при дефиците массы 10-20%, II степени – 20-30%, III степени – больше 30%.

1) Сначала определим, сколько должен весить ребенок в 3 месяца, для этого к весу при рождении ребенка прибавим ежемесячные прибавки, т.е.

г 55002 *8006003300 

2) Определяем разницу между долженствующим весом и фактическим (т.е. дефицит массы):

г 600 4900 5500  

3) Определяем какой процент, составляет дефицит массы, для этого воспользуемся формулой (2)

% 9,10% 1005500 600  

Ответ: Гипотрофия I степени и составляет 10,9%. 18
Задача №3: Ребенок родился ростом 51 см. Какой рост должен быть у него в 5 месяцев (5 лет)?

Решение: Прирост за каждый месяц первого года жизни составляет : в I четверть (1-3 мес.) по 3 см за каждый месяц, во II четверть (3-6 мес.) - 2,5 см, в III четверть (6-9мес.) – 1,5 см и в IV четверть (9-12 мес.) – 1,0 см.

Рост ребенка после года можно вычислить по формуле:

где 75 - средний рост ребенка в 1 год, 6 – среднегодовая прибавка, n – возраст ребенка. , 675 nX  

Рост ребенка в 5 месяцев: 51+3*3+2*2,5= 65 см

Рост ребенка в 5 лет: 75+6*5=105 см

Задача №4: Ребенок родился весом 3900г. Какой вес должен быть у него в 6 месяцев, 6 лет, 12 лет?

Решение: Увеличение массы тела ребенка за каждый месяц первого года жизни: Месяц

1

2

3

4

5

6

Прибавка

600

800

800

750

700

650

Месяц

7

8

9

10

11

12

Прибавка

600

550

500

450

400

350


написать администратору сайта