структура прог. СтруктПрогр. Методология проектирования программных продуктов
Скачать 0.54 Mb.
|
МЕТОДОЛОГИЯ ПРОЕКТИРОВАНИЯ ПРОГРАММНЫХ ПРОДУКТОВ Классификация методов проектирования програмных продуктов Проектирование алгоритмов и программ - наиболее ответственный этап жизненного цикла программных продуктов, определяющий, насколько создаваемая программа соответствует спецификациям и требованиям со стороны конечных пользователей. Затраты на создание, сопровождение и эксплуатацию программных продуктов, научно-технический уровень разработки, время морального устаревания и многое другое- все это также зависит от проектных решений. Пример 18.1. Переход к графической среде работы конечного пользователя типа Windows или Macintosh потребует создания пользовательского интерфейса с элементами управления в виде пиктограмм, кнопок, выпадающих меню, обязательного применения манипулятора мышь и др. Отсутствие в программном продукте уже ставших стандартом подобных элементов свидетельствует о том, что в будущем потребуются значительные затраты на модификацию этого продукта, иначе будет падать его конкурентоспособность и привлекательность для конечного пользователя. Методы проектирования алгоритмов и программ очень разнообразны, их можно классифицировать по различным признакам, важнейшими из которых являются: степень автоматизации проектных работ; принятая методология процесса разработки. По степени автоматизации проектирования алгоритмов и программ можно выделить: методы традиционного (неавтоматизированного) проектирования; методы автоматизированного проектирования (CASE-технология и ее элементы). Неавтоматизированное проектирование алгоритмов и программ преимущественно используется при разработке небольших по трудоемкости и структурной сложности программных продуктов, не требующих участия большого числа разработчиков. Трудоемкость разрабатываемых программных продуктов, как правило, небольшая, а сами программные продукты имеют преимущественно прикладной характер. При нарушении этих ограничений заметно снижается производительность труда разработчиков, падает качество разработки, и, как ни парадоксально, увеличиваются трудозатраты и стоимость программного продукта в целом. Автоматизированное проектирование алгоритмов и программ возникло с необходимостью уменьшить затраты на проектные работы, сократить сроки их выполнения, создать типовые "заготовки" алгоритмов и программ, многократно тиражируемых для различных разработок, координации работ большого коллектива разработчиков, стандартизации алгоритмов и программ. Автоматизация проектирования может охватывать все или отдельные лапы жизненного цикла программного продукта, при этом работы этапов могут быть изолированы друг от друга либо составлять единый комплекс, выполняемый последовательно во времени. Как правило, автоматизированный подход требует технического и программного "перевооружения" труда самих разработчиков (мощных компьютеров, дорогостоящего программного инструментария, а также повышения квалификации разработчиков и т.п.). Автоматизированное проектирование алгоритмов и программ под силу лишь крупным фирмам, специализирующимся на разработке определенного класса программных продуктов, занимающих устойчивое положение на рынке программных средств. Проектирование алгоритмов и программ может основываться на различных подходах, среди которых наиболее распространены: структурное проектирование программных продуктов; информационное моделирование предметной области и связанных с ней приложений; объектно-ориентированное проектирование программных продуктов. В основе структурного проектирования лежит последовательная декомпозиция, целенаправленное структурирование на отдельные составляющие. Начало развития структурного проектирования алгоритмов и программ падает на 60-е гг. Методы структурного проектирования представляют собой комплекс технических и организационных принципов системного проектирования. Типичными методами структурного проектирования являются: нисходящее проектирование, кодирование и тестирование программ; модульное программирование; структурное проектирование (программирование) и др. В зависимости от объекта структурирования различают: функционально-ориентированные методы - последовательное разложение задачи или целостной проблемы на отдельные, достаточно простые составляющие, обладающие функциональной определенностью; методы структурирования данных. Для функционально-ориентированных методов в первую очередь учитываются заданные функции обработки данных, в соответствии с которыми определяется состав и логика работы (алгоритмы) отдельных компонентов программного продукта. С изменением содержания функций обработки, их состава, соответствующего им информационного входа и выхода требуется перепроектирование программного продукта. Основной упор в структурном подходе делается на моделирование процессов обработки данных. Для методов структурирования данных осуществляется анализ, структурирование и создание моделей данных, применительно к которым устанавливается необходимый состав функций и процедур обработки. Программные продукты тесно связаны со структурой обрабатываемых данных, изменение которой отражается на логике обработки (алгоритмах) и обязательно требует перепроектирования программного продукта. Структурный подход использует: диаграммы потоков данных (информационно-технологические схемы) - показывают процессы и информационные потоки между ними с учетом "событий", инициирующих процессы обработки; интегрированную структуру данных предметной области (инфологическая модель, ER- диаграммы); диаграммы декомпозиции - структура и декомпозиция целей, функций управления, приложений; структурные схемы - архитектура программного продукта в виде иерархии взаимосвязанных программных модулей с идентификацией связей между ними, детальная логика обработки данных программных модулей (блок-схемы). Для полного представления о программном продукте необходима также текстовая информация описательного характера. Еще большую значимость информационные модели и структуры данных имеют для информационного моделирования предметной области, в основе которого положение об определяющей роли данных при проектировании алгоритмов и программ. Подход появился в условиях развития программных средств организации хранения и обработки данных - СУБД ( см. гл. 15). Один из основоположников информационной инженерии - Дж. Мартин - выделяет следующие составляющие данного подхода: информационный анализ предметных областей (бизнес - областей); информационное моделирование - построение комплекса взаимосвязанных моделей данных; системное проектирование функций обработки данных; детальное конструирование процедур обработки данных. Первоначально строятся информационные модели различных уровней представления: информационно-логическая модель, не зависящая от средств программной реализации хранения и обработки данных, отражающая интегрированные структуры данных предметной области; даталогические модели, ориентированные на среду хранения и обработки данных. Даталогические модели имеют логический и физический уровни представления. Физический уровень соответствует организации хранения данных в памяти компьютера. Логический уровень данных применительно к СУБД реализован в виде: концептуальной модели базы данных - интегрированные структуры данных под управлением СУБД; внешних моделей данных - подмножество структур данных для реализации приложений. Средствами структур данных моделируются функции предметной области, прослеживается взаимосвязь функций обработки, уточняется состав входной и выходной информации, логика преобразования входных структур данных в выходные. Алгоритм обработки данных можно представить как совокупность процедур преобразований структур данных в соответствии с внешними моделями данных. Выбор средств реализации базы данных определяет вид даталогические моделей и, следовательно, алгоритмы преобразования данных. В большинстве случаев используется реляционное представление данных базы данных и соответствующие реляционные языки для программирования (манипулирования) обработки данных СУБД и реализации алгоритмов обработки (см. гл. 19). Данный подход использован во многих CASE-технологиях. Объектно-ориентированный подход к проектированию программных продуктов основан на: выделении классов объектов; установлении характерных свойств объектов и методов их обработки; создании иерархии классов, наследовании свойств объектов и методов их обработки. Каждый объект объединяет как данные, так и программу обработки этих данных и относится к определенному классу. С помощью класса один и тот же программный код можно использовать для относящихся к нему различных объектов. Объектный подход при разработке алгоритмов и программ предполагает: объектно-ориентированный анализ предметной области; объектно-ориентированное проектирование. Объектно-ориентированный анализ - анализ предметной области и выделение объектов, определение свойств и методов обработки объектов, установление их взаимосвязей. Объектно-ориентированное проектирование соединяет процесс объектной декомпозиции и представления с использованием моделей данных проектируемой системы на логическом и физическом уровнях, в статике и динамике. Для проектирования программных продуктов разработаны объектно-ориентированные технологии, которые включают в себя специализированные языки программирования и инструментальные средства разработки пользовательского интерфейса. Традиционные подходы к разработке программных продуктов всегда подчеркивали различия между данными и процессами их обработки. Так, технологии, ориентированные на информационное моделирование, сначала специфицируют данные, а затем описывают процессы, использующие эти данные. Технологии структурного подхода ориентированы, в первую очередь, на процессы обработки данных с последующим установлением необходимых для этого данных и организации информационных потоков между связанными процессами. Объектно-ориентированная технология разработки программных продуктов объединяет данные и процессы в логические сущности - объекты, которые имеют способность наследовать характеристики (методы и данные) одного или более объектов, обеспечивая тем самым повторное использование программного кода. Это приводит к значительному уменьшению затрат на создание программных продуктов, повышает эффективность жизненного цикла программных продуктов (сокращается длительность фазы разработки).При выполнении программы объекту посылается сообщение, которое инициирует обработку данных объекта. ЭТАПЫ СОЗДАНИЯ ПРОГРАММНЫХ ПРОДУКТОВ При традиционной неавтоматизированной разработке программ независимо от принятого метода проектирования и используемого инструментария выполняют следующие работы. 1. Составление технического задания на программирование Данная работа соответствует этапу анализа и спецификации программ жизненного цикла программных продуктов. При составлений технического задания требуется: определить платформу разрабатываемой программы - тип операционной системы (например, для IBM PC-совместимых машин делается выбор операционной среды: MS DOS, Windows, Windows NT либо Unix, OS/2); оценить необходимость сетевого варианта работы программы (определяется программное обеспечение (ПО) вычислительной сети - Windows NT, допустимая номенклатура программного обеспечения сетевой обработки); определить необходимость разработки программы, которую можно переносить на различные платформы; обосновать целесообразность работы с базами данных под управлением СУБД. На этом же этапе выбирают методы решения задачи; разрабатывают обобщенный алгоритм решения комплекса задач, функциональную структуру алгоритма или состав объектов, определяют требования к комплексу технических средств системы обработки информации, интерфейсу конечного пользователя. 2. Технический проект На данном этапе выполняется комплекс наиболее важных работ, а именно: с учетом принятого подхода к проектированию программного продукта разрабатывается детальный алгоритм обработки данных или уточняется состав объектов и их свойств, методов обработки, событий, запускающих методы обработки; определяется состав общесистемного программного обеспечения, включающий базовые средства (операционную систему, модель СУБД, электронные таблицы, методо- ориентированные и функциональные ППП промышленного назначения и т.п.); разрабатывается внутренняя структура программного продукта, образованная отдельными программными модулями; осуществляется выбор инструментальных средств разработки программных модулей. Работы данного этапа в существенной степени зависят от принятых решений по технической части системы обработки данных и операционной среде, от выбранных инструментальных средств проектирования алгоритмов и программ, технологии работ. Пример 18.2.Для создания MS DОS-приложений может быть использован язык программирования Visual Basic for DOS Standard, Fortran 5.1,Visual C++ for Windows. Если необходима переносимость программ на другие ЭВМ или другие операционные платформы, выбирается среда Windows NT. При разработке программ, работающих в среде Windows, возможно применение технологии OLЕ 2.0 для создания приложений, включающих объекты других приложений. Определяется способ использования объектов: внедрение (embedding) или связывание (linking). Приложение может работать с базами данных различных СУБД, для этого служит стандартная технология интерфейса Open Database Connectivity (ODBC). Работа в режиме телекоммуникаций обеспечивается стандартной технологией Messaging Application Program Interface (MAPI). 3. Рабочая документация (рабочий проект) На данном этапе осуществляется адаптация базовых средств программного обеспечения (операционной системы, СУБД, методо-ориентированных ППП, инструментальных сред конечного пользователя - текстовых редакторов, электронных таблиц и т.п.). Выполняется разработка программных модулей или методов обработки объектов - собственно программирование или создание программного кода. Проводятся автономная и комплексная отладка программного продукта, испытание работоспособности программных модулей и базовых программных средств. Для комплексной отладки готовится контрольный пример, который позволяет проверить соответствие возможностей программного продукта заданным спецификациям. Основной результат работ этого этапа - также создание эксплуатационной документации на программный продукт: описание применения - дает общую характеристику программного изделия с указанием сферы его применения, требований к базовому программному обеспечению, комплексу технических средств; руководство пользователя - включает детальное описание функциональных возможностей и технологии работы с программным продуктом. Данный вид документации ориентирован на конечного пользователя и содержит необходимую информацию для самостоятельного освоения и нормальной работы пользователя (с учетом требуемой квалификации пользователя); руководство программиста (оператора) - указывает особенности установки (инсталляции) программного продукта и его внутренней структуры - состав и назначение модулей, правила эксплуатации и обеспечения надежной и качественной работы программного продукта. В ряде случаев на данном этапе для программных продуктов массового применения создаются обучающие системы, демоверсии. гипертекстовые системы помощи. 4. Ввод в действие Готовый программный продукт сначала проходит опытную эксплуатацию (пробный рынок продаж), а затем сдается в промышленную эксплуатацию (тиражирование и распространение программного продукта). СТРУКТУРА ПРОГРАММНЫХ ПРОДУКТОВ В большей степени программные продукты не являются монолитом и имеют конструкцию (архитектуру) построения - состав и взаимосвязь программных модулей. Модуль - это самостоятельная часть программы, имеющая определенное назначение и обеспечивающая заданные функции обработки автономно от других программных модулей. Таким образом, программный продукт обладает внутренней организацией, или внутренней структурой, образованной взаимосвязанными программными модулями. Это справедливо для сложных и многофункциональных программных продуктов, которые часто называются программными системами. Структуризация программ выполняется в первую очередь для удобства разработки, программирования, отладки и внесения изменений в программный продукт. Как правило, программные комплексы большой алгоритмической сложности разрабатываются коллективом разработчиков (2 - 15 и более человек). Управлять разработкой программ в условиях применения промышленных технологий изготовления программ можно лишь на научной основе. Таким образом, структуризация программных продуктов преследует основные цели: распределить работы по исполнителям, обеспечив приемлемую их загрузку и требуемые сроки разработки программных продуктов; построить календарные графики проектных работ и осуществлять их координацию в процессе создания программных изделий; контролировать трудозатраты и стоимость проектных работ и др. Структурное "разбиение" программ на отдельные составляющие служит основой и для выбора инструментальных средств их создания, хотя имеет место и обратное влияние - выбор инструментальных средств разработчика программного обеспечения определяет типы программных модулей. При создании программных продуктов выделяются многократно используемые модули, проводится их типизация и унификация, за счет чего сокращаются сроки и трудозатраты на разработку программного продукта в целом. Некоторые программные продукты используют модули из готовых библиотек стандартных подпрограмм, процедур, функций, объектов, методов обработки данных. На рис. 18.1 приведена типовая структура программного продукта, состоящего из отдельных программных модулей и библиотек процедур, встроенных функций, объектов и т.п. Рис 18.1. Структура программного продукта Среди множества модулей различают: головной модуль - управляет запуском программного продукта (существует в единственном числе); управляющий модуль- обеспечивает вызов других модулей на обработку; рабочие модули - выполняют функции обработки; сервисные модули и библиотеки, утилиты - осуществляют обслуживающие функции. В работе программного продукта активизируются необходимые программные модули. Управляющие модули задают последовательность вызова на выполнение очередною модуля. Информационная связь модулей обеспечивается за счет использования общей базы данных либо межмодульной передачи данных через переменные обмена. Каждый модуль может оформляться как самостоятельно хранимый файл; для функционирования программного продукта необходимо наличие программных модулей в полном составе. Структурно-сложные программные продукты разрабатываются как пакеты программ, и чаще всего они имеют прикладной характер - пакеты прикладных программ, или ППП. ППП (application program package)- это система программ, предназначенных для решения задач определенного класса. Компоненты ППП объединены общими данными (базой данных), информационно и функционально связаны между собой и обладают свойством системности, т.е. объединению программ присуще новое качество, которое отсутствует для отдельного компонента ППП. Структура ППП, как правило, многомодульная. 2.3. Нисходящая и восходящая разработка программного обеспеченияПри проектировании, реализации и тестировании компонентов структурной иерархии, полученной при декомпозиции, применяют два подхода: •восходящий; •нисходящий. Влитературе встречается еще один подход, получивший название «расширение ядра». Он предполагает, что в первую очередь проектируют и разрабатывают некоторую основуядро программного обеспечения, например, структуры данных и процедуры, связанные с ними. В дальнейшем ядро наращивают, комбинируя восходящий и нисходящий методы. На практике данный подход в зависимости от уровня ядра практически сводится либо к нисходящему, либо к восходящему подходам. Восходящий подход. При использовании восходящего подхода сначала проектируют и реализуют компоненты нижнего уровня, затем предыдущего и т. д. По мере завершения тестирования и отладки компонентов осуществляют их сборку, причем компоненты нижнего уровня при таком подходе часто помещают в библиотеки компонентов. Для тестирования и отладки компонентов проектируют и реализуют специальные тестирующие программы. Подход имеет следующие недостатки: •увеличение вероятности несогласованности компонентов вследствие неполноты спецификаций; •наличие издержек на проектирование и реализацию тестирующих программ, которые нельзя преобразовать в компоненты; •позднее проектирование интерфейса, а соответственно невозможность продемонстрировать его заказчику для уточнения спецификаций и т. д. Исторически восходящий подход появился раньше, что связано с особенностью мышления программистов, которые в процессе обучения привыкают при написании небольших программ сначала детализировать компоненты нижних уровней (подпрограммы, классы). Это позволяет им лучше осознавать процессы верхних уровней. При промышленном изготовлении программного обеспечения восходящий подход в настоящее время практически не используют. Нисходящий подход. Нисходящий подход предполагает, что проектирование и последующая реализация компонентов выполняется «сверху-вниз», т. е. вначале проектируют компоненты верхних уровней иерархии, затем следующих и так далее до самых нижних уровней. В той же последовательности выполняют и реализацию компонентов. При этом в процессе программирования компоненты нижних, еще не реализованных уровней заменяют специально разработанными отладочными модулями - «заглушками», что позволяет тестировать и отлаживать уже реализованную часть. При использовании нисходящего подхода применяют иерархический, операционный и комбинированный методы определения последовательности проектирования и реализации компонентов. Иерархический метод предполагает выполнение разработки строго по уровням. Исключения допускаются при наличии зависимости по данным, т. е. если обнаруживается, что некоторый модуль использует результаты другого, то его рекомендуется программировать после этого модуля. Основной проблемой данного метода является большое количество достаточно сложных заглушек. Кроме того, при использовании данного метода основная масса модулей разрабатывается и реализуется в конце работы над проектом, что затрудняет распределение человеческих ресурсов. Операционный метод связывает последовательность выполнения при запуске программы. Применение метода усложняется тем, что порядок выполнения модулей может зависеть от данных. Кроме того, модули вывода результатов, несмотря на то, что они вызываются последними, должны разрабатываться одними из первых, чтобы не проектировать сложную заглушку, обеспечивающую вывод результатов при тестировании. С точки зрения распределения человеческих ресурсов сложным является начало работ, пока не закончены все модули, находящиеся на так называемом критическом пути. Комбинированный метод учитывает следующие факторы, влияющие на последовательность разработки: •достижимость модуля - наличие всех модулей в цепочке вызова данного модуля; •зависимость по данным - модули, формирующие некоторые данные, должны создаваться раньше обрабатывающих; •обеспечение возможности выдачи результатов - модули вывода результатов должны создаваться раньше обрабатывающих; •готовность вспомогательных модулей - вспомогательные модули, например, модули закрытия файлов, завершения программы, должны создаваться раньше обрабатывающих; •наличие необходимых ресурсов. Кроме того, при прочих равных условиях сложные модули должны разрабатываться прежде простых, так как при их проектировании могут выявиться неточности в спецификациях, а чем раньше это произойдет, тем лучше. Нисходящий подход допускает нарушение нисходящей последовательности разработки компонентов в специально оговоренных случаях. Так, если некоторый компонент нижнего уровня используется многими компонентами более высоких уровней, то его рекомендуют проектировать и разрабатывать раньше, чем вызывающие его компоненты. И, наконец, в первую очередь проектируют и реализуют компоненты, обеспечивающие обработку правильных данных, оставляя компоненты обработки неправильных данных напоследок. Пример определения последовательности реализации модулей будет рассмотрен в § 5.2. Нисходящий подход обычно используют и при объектно-ориентированном программировании. В соответствии с рекомендациями подхода вначале проектируют и реализуют пользовательский интерфейс программного обеспечения, затем разрабатывают классы некоторых базовых объектов предметной области, а уже потом, используя эти объекты, проектируют и реализуют остальные компоненты. Нисходящий подход обеспечивает: •максимально полное определение спецификаций проектируемого компонента и согласованность компонентов между собой; •раннее определение интерфейса пользователя, демонстрация которого заказчику позволяет уточнить требования к создаваемому программному обеспечению:
2.4. Структурное и «неструктурное» программирование. Средства описания структурных алгоритмовОдним из способов обеспечения высокого уровня технологичности разрабатываемого программного обеспечения является структурное программирование. Различают три вида вычислительного процесса, реализуемого программами: линейный, разветвленный и циклический. Линейная структура процесса вычислений предполагает, что для получения результата необходимо выполнить некоторые операции в определенной последовательности. Разветвленная структура процесса вычислений предполагает, что конкретная последовательность операций зависит от значений одной или нескольких переменных. Циклическая структура процесса вычислений предполагает, что для получения результата некоторые действия необходимо выполнить несколько раз. Для реализации указанных вычислительных процессов в программах используют соответствующие управляющие операторы. Первые процедурные языки программирования высокого уровня, такие, как FORTRAN, понятием «тип вычислительного процесса» не оперировали. Для изменения линейной последовательности операторов в них, как в языках низкого уровня, использовались команды условной (при выполнении некоторого условия) и безусловной передач управления. Потому и программы, написанные на этих языках, имели запутанную структуру, присущую в настоящее время только низкоуровневым (машинным) языкам. Именно для изображения схем алгоритмов таких программ в свое время был разработан ГОСТ 19.701-90, согласно которому каждой группе действий ставится в соответствие специальный блок (табл. 2.3). Хотя этот стандарт предусматривает блоки для обозначения циклов, он не запрещает и произвольной передачи управления, т. е. допускает использование команд условной и безусловной передачи управления при реализации алгоритма. В качестве примера, демонстрирующего особенности использования команд передачи управления для организации требуемого типа вычислительного процесса, рассмотрим программу на языке Ассемблера. Пример 2.1 (вариант 1). Реализовать на языке Ассемблера подпрограмму поиска минимального элемента массива а(n). На рис. 2.2 приведен пример неудачной реализации этой подпрограммы. Стрелками показаны передачи управления. Даже с комментариями и стрелками понять хорошо известный алгоритм достаточно сложно. После того, как в 60-х годах XX в. было доказано, что любой сколь угодно сложный алгоритм можно представить с использованием трех основных управляющих конструкций, в языках программирования высокого уровня появились управляющие операторы для реализации соответствующих конструкций. Эти три конструкции принято считать базовыми. К ним относят конструкции: • следование - обозначает последовательное выполнение действий (рис. 2.3, а); • ветвление - соответствует выбору одного из двух вариантов действий (рис. 2.3, б); цикл-пока - определяет повторение действий, пока не будет нарушено некоторое условие, выполнение которого проверяется в начале цикла (рис. 2.3,б). Помимо базовых, процедурные языки программирования высокого уровня обычно используют еще три конструкции, которые можно составить из базовых: •выбор - обозначает выбор одного варианта из нескольких в зависимости от значения некоторой величины (рис. 2.4, а); •цикл-do- обозначает повторение некоторых действий до выполнения заданного условия, проверка которого осуществляется после выполнения действий в цикле (рис. 2.4, б); •цикл с заданным числом повторений (счетный цикл) - обозначает повторение некоторых действий указанное количество раз (рис. 2.4, в). Любая из дополнительных конструкций легко реализуется через базовые. Перечисленные шесть конструкций были положены в основу структурного программирования. Перечисленные шесть конструкций были положены в основу структурного программирования. В качестве примера, демонстрирующего особенности использования команд передачи управления для организации требуемого типа вычислительного процесса, рассмотрим программу на языке Ассемблера. Пример 2.1 (вариант 1). Реализовать на языке Ассемблера подпрограмму поиска минимального элемента массива а(n). На рис. 2.2 приведен пример неудачной реализации этой подпрограммы. Стрелками показаны передачи управления. Даже с комментариями и стрелками понять хорошо известный алгоритм достаточно сложно. Примечание. Слово «структурное» в данном названии подчеркиваем тот факт, что при программировании использованы только перечисленные конструкции (структуры). Отсюда и понятие «программирование без go to». Программы, написанные с использованием только структурных операторов передачи управления, называют структурными, чтобы подчеркнуть их отличие от программ, при проектировании или реализации которых использовались низкоуровневые способы передачи управления. |