|
Микробиологииииммунологии
№62Антителообразование:первичныйивторичныйответ.
| №63Иммунологическаяпамять.Иммунологическаятолерантность.
| №64КлассификациягиперчувствительностипоДжейлуиКумбсу.
| Способность к образованию антител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зрелого возраста и несколько снижается к старости. Динамика образования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько стадий. Выделяют латентную, логарифмическую, стационарную фазу и фазу снижения.
Влатентнойфазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез антител. В этот период антитела в крови не обнаруживаются.
Во время логарифмической фазы синтезированные антитела высвобождаются из плазмоцитов и поступают в лимфу и кровь.
Встационарнойфазе количество антител достигает максимума и ста- билизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный ответ) латентная фаза составляет 3—5 сут, логарифмическая — 7— 15 сут, стационарная — 15—30 сут и фаза снижения — 1—6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG.
В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1—2 сут, логарифмическая фаза характеризуется быстрым нарастанием и значительно более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение не- скольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.
Такое различие динамики антителообразования при первичном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формируется клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антигеном клон лимфоцитов с иммунологической памятью быстро размножается и интенсивно включает процесс антителогенеза.
Очень быстрое и энергичное антителообразование при повторной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при производстве диагностических и лечебных сывороток от иммунизированных животных, а также для экстренного создания иммунитета при вакцинации.
| Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название иммунологической памяти. Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.
Насегодняшнийденьрассматриваютдванаиболеевероятныхмеханизмаформирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих де- ндритных АПК, способных длительно сохранять и презентировать антиген.
Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или В- лимфоцитов дифференцируется в малые покоящиеся клетки, или клеткииммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.
Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2—3-кратными при- вивками при первичной вакцинации и периодическими повторными введениями вакцинного препарата — ревакцинациями.
Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию — кризотторжения.
Иммунологическая толерантность — явление, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.
В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.
Иммунологическую толерантность вызывают антигены, которые получили название толерогены.Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.
Иммунологическаятолерантностьбывает врожденной и приобретенной. Примером врожденнойтолерантностиявляется отсутствие реакции иммунной системы на свои собственные антигены. Приобретеннуютоле-рантностьможно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активнаятолерантностьсоздается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).
Иммунологическаятолерантностьотличаетсяспецифичностью — она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентнаятолерантностьвозникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной,или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.
Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена.
Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовуютолерантностьвызывают введением больших количеств высококонцентрированного антигена. Низкодозоваятолерантность,наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.
Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:
Элиминация из организма антигенспецифических клонов лимфоцитов. Блокада биологической активности им-мунокомпетентных клеток. Быстрая нейтрализация антигена антителами.
Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессив- ным поведением иммунной системы.
| Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллергии: анафилактический (I тип), цитотоксический (II тип), иммунокомплексный (III тип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый — к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ — лимфоидно- макрофагальная реакция.
Аллергическая реакция I типа связана с биологическими эффектами IgE и G4, названных реагинами,которые обладают цитофильностью — сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко- рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки — залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. В результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.
Цитотоксические антитела (IgG, IgM), направленные против поверхностных структур (антигенов) соматических клеток макроорганизма, связываются с клеточными мембранами клеток-мишеней и запускают различные механизмы антителозависимой цитотоксичности (аллергическая реакция II типа). Массивный цитолиз сопровождается соответствующими клиническими проявлениями. Классическим примером является гемолити- ческая болезнь в результате резус-конфликта или переливания иногруппной крови.
Цитотоксическим действием обладают также комплексы атиген—антитело, образующиеся в организме пациента в большом количестве после введения массивной дозы антигена (аллергическая реакция III типа). В связи с кумулятивным эффектом клиническая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от применения иммунных гетерологичных сыворо- ток с лечебно-профилактической целью («сывороточная болезнь»), а также при вдыхании белковой пыли («легкоефермера»).
Лабораторная диагностика аллергии при аллергических реакциях I типа основана на выявлении суммарных и специфических реагинов (IgE, IgG4) в сыворотке крови пациента. При аллергических реакциях II типа в сыворотке крови определяют цитотоксические антитела (антиэритроцитарные, антилейкоцитарные, антитромбоцитарные и др.). При аллергических реакциях III типа в сыворотке крови выявляют иммунные комплексы. Для обнаружения аллергических реакций IV типа применяют кожно- аллергические пробы, которые широко используют в диагностике некоторых инфекционных и паразитарных заболеваний и микозов (туберкулез, лепра,
бруцеллез, туляремия и др.).
| Тип реакции
| Фактор патоген
еза
| Механизм патогенеза
| Клинический пример
| I.
анафилакти ческий (ГНТ)
| IgE, IgG4
| Образование рецепторного комплекса IgE (G4)- АсК тучных клеток и базофилов → Взамодействие эпитопа аллергена с рецепторным комплексом → Активация тучных клеток и базофилов
→ Высвобождение медиаторов воспаления и других
биологически активных веществ
| Анафилаксия, анафилактический шок, поллинозы
| II.
цитотоксич еский (ГНТ)
| IgM IgG
| Выработка цитотоксических антител →
Активация антителозависимого цитолиза
| Лекарственная волчанка, аустоиммунная гемолитическая болезнь,
аутоиммунная тромбоцитопения
|
| III.
иммуноком плексный (ГНТ)
| IgM IgG
| Образование избытка иммунных комплексов → Отложение
иммунных комплексов на базальных мембранах, эндотелии и в соединительнотканно й строме → Активация антителозависимой клеточно- опосредованной цитотоксичности → Запуск иммунного
воспаления
| Сывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «лѐгкое фермера»
|
| IV.
клеточно- опосредова нный (ГЗТ)
| Т-
лимфоц иты
| Сенсибилизация Т- лимфоцитов → Активация макрофага
→ Запуск иммунного воспаления
| Кожно- аллергическая проба, контактная аллергия, белковая аллергия
замедленного типа
| |
|
|