Главная страница

Web - программирование. Средства web-программирования. Министерство просвещения Российской Федерации Направление подготовки


Скачать 182.3 Kb.
НазваниеМинистерство просвещения Российской Федерации Направление подготовки
АнкорWeb - программирование
Дата14.02.2021
Размер182.3 Kb.
Формат файлаdocx
Имя файлаСредства web-программирования.docx
ТипДокументы
#176269
страница5 из 6
1   2   3   4   5   6

Системы управления базами данных


База данных – это совокупность структурированных и взаимосвязанных данных, относящихся к определенной предметной области [6].

Для создания, хранения, обработки и коллективного использования информации применяются специальные программные системы, называемые системами управления базами данных (СУБД).

К основным функциям СУБД относятся следующие:

- физическое размещение в памяти данных и их описаний;

- поддержка баз данных в актуальном состоянии;

- механизмы поиска запрашиваемых данных;

- доступ к данным при одновременном запросе одних и тех же данных многими пользователями (прикладными программами);

- способы обеспечения защиты данных от некорректных обновлений и/или несанкционированного доступа.

Основная особенность СУБД – это наличие процедур для ввода и хранения не только самих данных, но и описаний их структуры.

Тщательное проектирование базы данных – первый и очень важный шаг создания базы. Он позволяет избежать затрат, связанных с внесением исправлений в структуру хранящихся данных. Проектирование базы данных начинается с анализа предметной области и выявления требований к ней отдельных пользователей (сотрудников организации, для которых создается база данных). На этапе проектирования выявляются объекты информации и их характеристики, определяются виды данных, требующие регулярного обновления, и способы представления информации на экране и в отчетах, формулируются вопросы, на которые необходимо регулярно отвечать при поиске данных. Это помогает конкретизировать требования к хранимой информации. В любой момент можно изменить структуру хранящейся в базе информации, подкорректировав структуру таблиц и, соответственно, форм и отчетов. За проектирование и поддержку базы данных отвечает администратор базы данных (АБД).

СУБД использует следующие модели и описания:

- инфологическую;

- даталогическую;

- физическую.

Трехуровневая архитектура (инфологический, даталогический и физический уровни) позволяет обеспечить независимость хранимых данных от использующих их программ.

Первоначально создается обобщенное неформальное описание создаваемой базы данных. Это описание называют инфологической моделью данных, и оно выполняется с использованием естественного языка, блок-схем, математических формул, таблиц, графиков и других средств. Инфологическая модель отражает предметную область, для которой проектируется база данных, и полностью независима от физических параметров среды хранения данных. Основными конструктивными элементами инфологических моделей являются сущности, связи между ними и их свойства (атрибуты). Инфологическая модель не должна изменяться до тех пор, пока изменения в реальном мире не повлекут за собой изменения предметной области и, следовательно, изменения в модели.

Описание, создаваемое разработчиками базы данных по инфологической модели данных, называют даталогической моделью данных. Конечным результатом даталогического проектирования является описание логической структуры базы данных на ЯОД – языке описания данных конкретной СУБД. При создании даталогической модели данных обеспечивается однозначное соответствие между конструкциями языка описания данных и графическими обозначениями информационных единиц и связей между ними.

В основе каждой СУБД лежит концепция модели данных, то есть некоторой абстракции представления данных. Изначально были успешными две конкурирующие модели – иерархическая и сетевая. Иерархическая БД состоит из упорядоченного набора деревьев. Корпорация IBM разработала и внедрила язык описания данных DL/I (Data Language One), который моделировал данные в иерархической форме (представление данных в форме деревьев). Эта модель была разработана совместно с промышленными предприятиями и предназначалась для хранения и поддержки данных, которые иерархически связаны между собой, например, сметы материалов и списки деталей. Типичным представителем иерархической СУБД является СУБД IMS (Information Management System) компании IBM, первая версия которой появилась в 1968 г.

Все экземпляры определенного типа порожденной записи, относящиеся к одному экземпляру исходной записи, называются близнецами. Иерархическая модель реализует отношение между исходной и дочерними записями по схеме один-ко-многим., то есть одной родительской записи может соответствовать любое число дочерних. В иерархической базе данных существует единственный иерархический путь доступа к любой записи, начиная с корня дерева, т.е. порядок обхода дерева – сверху-вниз, слева-направо. По сути иерархическая модель – ориентированный граф.

В терминологии IMS вместо термина "запись" использовался термин "сегмент", а под термином "запись базы данных" понималось все дерево сегментов. В 1970 году группа CODASYL, которая разрабатывала стандарты для языка COBOL, создала модель под названием DBTG (Data Base Task Group, группа задач базы данных). Модель DBTG была готова к представлению как иерархических, так и сетевых данных. Однако эта модель была очень сложной, поэтому не имела большого успеха.

Типичным представителем систем, основанных на сетевой модели данных, является СУБД IDMS (Integrated Database Management System), разработанная компанией Cullinet Software, Inc. Сетевой подход к организации данных является расширением иерархического подхода. Как и в иерархической модели, связи ведут от родительской записи к дочерней, но на этот раз поддерживается множественное наследование. В сетевой модели допускается несколько исходных записей для одной порожденной записи наряду с возможностью наличия записей без исходной записи (рис. Рисунок 3). Другими словами, в сетевой модели любая запись может участвовать в нескольких отношениях предок-потомок. Сетевая модель – неориентированный граф.



Рисунок 3 - схема сетевой модели данных

Большинство применяемых сегодня баз данных основаны на реляционной модели. Основная идея реляционной модели – представить произвольную структуру данных в виде двумерных таблиц.

Реляционная модель впервые была предложена Э.Ф. Коддом (E.F. Codd) в 1970 году. Понятие модели данных, введенное Коддом, впоследствии развил Кристофер Дейт. Согласно Дейту, реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части. Данные хранятся в таблицах. Столбцы таблиц называются полями, а строки – записями. В каждом поле может храниться информация только одного типа. Запросы предназначены для манипулирования данными, содержащимися в базе данных.

Кодд определил правила реляционной модели, которые получили название "12 правил Кодда". Позже Кодд добавил "нулевое" правило.

  1. Реляционная СУБД должна быть способна полностью управлять базой данных, используя связи между данными.

  2. Информационное правило: вся информация в реляционной БД, включая имена таблиц и столбцов, должна определяться строго как значения таблиц.

  3. Гарантированный доступ: любое значение БД должно быть гарантированно доступным через комбинацию имени таблицы, первичный ключ и имя столбца.

  4. Поддержка нулевого значения: СУБД должна уметь работать с нулевыми (пустыми) значениями. Нулевое значение – это неизвестное, независимое, неприменимое значение, в отличие от значений по умолчанию и обычных значений.

  5. Активный, оперативный реляционный каталог – описание БД и ее содержимое – должны быть определены на логическом уровне через таблицы, к которым можно применять запросы, используя DML (Data Manipulation Language – язык манипулирования данными).

  6. Исчерпывающее подмножество языка данных: по крайней мере, один из поддерживаемых языков должен иметь четко определенный синтаксис и быть самодостаточным. Он должен поддерживать определение данных и манипулирование ими, правила целостности, авторизацию и транзакции.

  7. Правило обновления представлений: все представления, теоретически обновляемые, могут быть обновлены через систему.

  8. Вставка, обновление и удаление: СУБД поддерживает не только запрос данных, но и вставку, обновление и удаление.

  9. Физическая независимость данных: логика программ-приложений остается прежней при изменении физических методов доступа к данным и структур хранения.

  10. Логическая независимость данных: логика программ-приложений остается прежней, в пределах разумного, при изменении структур таблиц.

  11. Независимость целостности: язык БД должен быть способен определять ограничения целостности. Они должны быть доступны из оперативного каталога, и не должно быть способа их обойти.

  12. Независимость распределения: перенос базы данных с одного компьютера на другой компьютер не должен оказывать влияния на запросы программ-приложений. Реляционная СУБД не должна зависеть от потребностей конкретного клиента.

  13. Согласованность языков всех уровней: низкоуровневый язык доступа к данным не должен игнорировать правила безопасности и целостности, поддерживаемые языком более высокого уровня.

Предложив реляционную модель данных, Э.Ф. Кодд создал и инструмент для удобной работы с отношениями – реляционную алгебру – формальную систему манипулирования отношениями, основными операциями которой являются проекция, соединение, пересечение и объединение.

Реляционное исчисление – это еще одна формальная система, которая манипулирует отношениями. Реляционное исчисление основано на логике первого порядка. Так же, как и выражения реляционной алгебры, формулы реляционного исчисления определяются над отношениями реляционных баз данных, и результатом вычисления также является отношение.

Реляционная алгебра и реляционное исчисление имеют одинаковую выражающую мощность; т. е. все запросы, которые можно сформулировать с помощью реляционной алгебры, могут быть также сформулированы с помощью реляционного исчисления и наоборот. Первым это доказал Э. Ф. Кодд в 1972 году. Это доказательство основано на алгоритме, по которому произвольное выражение реляционного исчисления может быть сокращено до семантически эквивалентного выражения реляционной алгебры. Алгоритм носит название "алгоритм редукции Кодда".

В настоящее время практически каждый производитель СУБД предлагает собственный программный продукт автоматизированного проектирования. Это Oracle Designer (Oracle), Power Desinger (Sybase) и другие. Демонстрационные версии данных программных продуктов можно загрузить с соответствующих сайтов (www.oracle.comwww.sybase.com). Кроме того, для автоматизированного проектирования представлены решения фирм, не производящих СУБД. Наиболее распространенными являются программные продукты фирмы AllFusion – AllFusion ERwin Data Modeler и AllFusion Process Modeler (ранее – BPwin) (см. www.interface.ru).

Реляционные языки обеспечивают типовые операции по обработке реляционных таблиц, позволяют формулировать логические условия, используемые в операциях выборки, проверку целостности (непротиворечивости) данных взаимосвязанных таблиц. Они оперируют с данными как со множествами, применяя к ним основные операции теории множеств. На входе реляционного оператора – множество записей одной или нескольких реляционных таблиц, на выходе – множество записей новой реляционной таблицы. Реляционные языки имеют различный уровень процедурности – содержание и последовательность перехода от входных данных к выходным.

Выделяют следующие разновидности языков реляционной алгебры:

- dBASe-подобные языки приближены к языкам структурного программирования. Эти языки обеспечивают создание интерфейса пользователя и типовые операции обработки данных;

- графические реляционные языки, ориентированные на конечных пользователей;

- SQL-подобные языки запросов, реализованные в большинстве многопользовательских и распределенных систем управления базами данных.

Популярные системы управления базами данных (рис. Рисунок 4).



Рисунок 4 - популярные СУБД
  1. 1   2   3   4   5   6


написать администратору сайта