Молодая гвардия
Скачать 1.18 Mb.
|
И. Новиков Черные дыр и Вселенная МОСКВА “МОЛОДАЯ ГВАРДИЯ” 1985 ВВЕДЕНИЕ В этой книге рассказывается об открытиях в астрофизике последнего времени — о черных дырах, о начале расширения Вселенной и о том, что ее ждет в будущем. Каждый читатель, конечно, слышал или читал о черных дырах. О них часто говорят в передачах по телевидению, по радио, пишут в газетах, в журналах и книгах разного жанра — от научных монографий до художественной и даже детской литературы. Откуда такая популярность? Дело в том, что черные дыры — объекты совершенно фантастические по своим свойствам. “Из всех измышлений человеческого ума, от единорогов и химер до водородной бомбы, наверное, самое фантастическое — это образ черный дыры, отделенной от остального пространства определенной границей, которую ничто не может пересечь; дыры, обладающей настолько сильным гравитационным полем, что даже свет задерживается его мертвой хваткой; дыры, искривляющей пространство и тормозящей время. Подобно единорогам и химерам, черная дыра кажется более уместной в фантастических романах или в мифах древности, чем в реальной Вселенной. И тем не менее законы современной физики фактически требуют, чтобы черные дыры существовали. Возможно, только наша Галактика содержит миллионы их” — так сказал о черных дырах американский физик К. Торн. К этому следует добавить, что внутри черной дыры удивительным образом меняются свойства пространства и времени, закручивающихся в своеобразную воронку, а в глубине находится граница, за которой время и пространство распадаются на кванты... Внутри черной дыры, за краем этой своеобразной гравитационной бездны, откуда нет выхода, текут удивительные физические процессы, проявляются новые законы природы. Черные дыры являются самыми грандиозными источниками энергии во Вселенной. Мы, вероятно, наблюдаем их в далеких квазарах, во взрывающихся ядрах галактик. Они возникают также после смерти больших звезд. Возможно, черные дыры в будущем станут источниками энергии для человечества. Замечательные открытия были сделаны астрофизиками при изучении “Большого взрыва” — так называют наблюдаемое расширение всей Вселенной. Когда и почему началось расширение Вселенной? Что происходило сразу после начала расширения? Как и почему во Вселенной появилось вещество? Почему образовались галактики? Бесконечна ли Вселенная? Что ждет Вселенную в далеком будущем? — об этом говорится в предлагаемой книге. Возникает вопрос: почему мы рассказываем о черных дырах и о Вселенной в целом в одной книжке? Что у них общего, что их объединяет? Ответ можно сформулировать очень кратко — с точки зрения физики, общим является сверхсильное поле тяготения. И черные дыры, и Вселенная в целом в современной науке исследуются релятивистской астрофизикой — ветвью астрофизики, занимающейся изучением процессов, где гравитационные поля столь сильны, что разгоняют движущиеся в них тела до скоростей, близких к скорости света, то есть до максимально возможных в природе скоростей. Ни в каких других объектах поля тяготения не достигают таких больших величин. Но есть и другая общая черта, свойственная и черным дырам, и Вселенной, — это их таинственность, загадочность, необычность? Свойства их кардинально отличаются не только от свойств предметов, окружающих нас в обыденной жизни, но и от свойств многих физических объектов и небесных тел, которые часто тоже далеко не тривиальны. Чем таинственней загадка, чем глубже проблема, тем больший интерес она вызывает и у специалистов, и у всех интересующихся наукой. А. Эйнштейн, создатель общей теории относительности, писал: “Самое прекрасное и глубокое переживание, выпадающее на долю человека, — это ощущение таинственности”. А у черных дыр и у Вселенной вряд ли найдутся конкуренты по части их загадочности. Наконец, есть еще одно немаловажное обстоятельство, побуждающее нас рассказывать об этих проблемах вместе. Известно, что Вселенная расширяется. В далеком прошлом плотность материи во Вселенной была колоссальной. Невообразимо огромны были энергии частиц, силы их взаимодействия. В таких условиях проявлялись совершенно новые законы природы, кардинально менялись свойства даже пространства и времени. Такое состояние получило название сингулярного состояния. Как уже сказано, оно было во Вселенной в прошлом. С другой стороны, внутри черной дыры также неизбежно возникает сингулярное состояние. Поэтому иногда черную дыру называют лабораторией, в которой в миниатюре моделируется прошлое нашей Вселенной. Неудивительно, что проблемами эволюции Вселенной и черных дыр часто занимаются одни и те же ученые (в частности, и автор этих строк). Еще на рубеже XIII—XIV веков люди говорили: “Не давай два объяснения, если достаточно одного”; мы посчитали необходимым привести несколько аргументов, заставивших нас объединить в одной книжке рассказ о проблемах, казалось бы, столь разных. Книга предназначена для тех, кто любит глубокие научные загадки. В ней говорится об отдельных особенностях, свойствах черных дыр и Вселенной, о том, как решаются одни проблемы и возникают новые. Конечно, при атом не ставится цель рассказать все и исчерпать вопрос. Такая цель была бы невыполнима для книги нашего жанра. Скорее автору хотелось с помощью отдельных штрихов создать образ тех грандиозных проблем, которые решены или решаются релятивистской астрофизикой. ЧАСТЬ I. ЧЕРНЫЕ ДЫРЫ ГЛАВА 1. ЧТО ЭТО ТАКОЕ? НЕВИДИМЫЕ МИРУ ЗВЕЗДЫ Черная дыра является порождением тяготения. Поэтому предысторию открытия черных дыр можно начать со времен И. Ньютона, открывшего закон всемирного тяготения — закон, управляющий силой, действию которой подвержено абсолютно все. Ни во времена И. Ньютона, ни сегодня, спустя века, не обнаружена иная столь универсальная сила. Все другие виды физического взаимодействия связаны с конкретными свойствами материи. Например, электрическое поле действует только на заряженные тела, а тела нейтральные совершенно к нему безразличны. И только тяготение абсолютно царствует в природе. Поле тяготения действует на все: на легкие частицы и тяжелые (причем при одинаковых начальных условиях совершенно одинаково), даже на свет. То, что свет притягивается массивными телами, предполагал еще И. Ньютон С этого факта, с понимания того, что свет также подчинен силам тяготения, и начинается предыс-юрия черных дыр, история предсказаний пх поразительных свойств. Одним из первых это сделал знаменитый французский математик и астроном П. Лаплас. Имя П. Лапласа хорошо известно в истории науки. Прежде всего он является автором огромного пятитомного труда “Трактат о небесной механике”. В этой работе, публиковавшейся с 1798 по 1825 год, им была представлена классическая теория движения тел Солнечной системы, основанная только на законе всемирного тяготения Ньютона. До этой работы некоторые наблюдаемые особенности движения планет, Луны, других тел Солнечной системы не были полностью объяснены. Казалось даже, что они противоречат закону Ньютона. П. Лаплас тонким математическим анализом показал, что все эти особенности объясняются взаимным притяжением небесных тел, влиянием тяготения планет друг на друга. Только одна сила царит в небесах, провозглашал он, — это сила тяготения. “Астрономия, рассматриваемая с наиболее общей точки зрения, есть великая проблема механики”, — писал П. Лаплас в предисловии к своему “Трактату”. Кстати, сам термин “небесная механика”, так прочно вошедший в науку, был впервые употреблен им. П. Лаплас был также одним из первых, кто понял необходимость исторического подхода к объяснению свойств систем небесных тел. Он вслед за И. Кантом предложил гипотезу происхождения Солнечной системы из первоначально разреженной материи. Главная идея гипотезы Лапласа о конденсации Солнца и планет из газовой туманности и до сих пор служит основой современных теорий происхождения Солнечной системы... Обо всем этом много писалось в литературе и в учебниках точно так же, как и о гордых словах П. Лапласа, который в ответ на вопрос Наполеона: почему в его “Небесной механике” не упоминается бог? — сказал: “Я не нуждаюсь в этой гипотезе”. А вот о чем до последнего времени было мало известно, — это о предсказании им возможности существования невидимых звезд. Предсказание было сделано в его книге “Изложение систем мира”, вышедшей в 1795 году. В этой книге, которую мы бы сегодня назвали популярной, знаменитый математик ни разу не прибегнул к формулам и чертежам. Глубокое убеждение П. Лапласа в том, что тяготение действует на свет точно так же, как и на другие тела, позволило ему написать следующие знаменательные слова: “Светящаяся звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми”. В книге не приводилось доказательств этого утверждения. Оно было опубликовано им несколько лет спустя. Как рассуждал П. Лаплас? Он рассчитал, пользуясь теорией тяготения Ньютона, величину, которую мы теперь называем второй космической скоростью, на поверхности звезды. Это та скорость, которую надо придать любому телу, чтобы оно, поборов тяготение, навсегда улетело от звезды или планеты в космическое пространство. Если начальная скорость тела меньше второй космической, то силы тяготения затормозят и остановят движение тела и заставят его снова падать к тяготеющему центру. В наше время космических полетов каждый знает, что вторая космическая скорость на поверхности Земли равна 11 километрам в секунду. Вторая космическая скорость на поверхности небесного тела тем больше, чем больше масса и чем меньше радиус этого тела. Эю понятно: ведь с ростом массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает. На поверхности Луны вторая космическая скорость равна 2,4 километра в секунду, на поверхности Юпитера 61, на Солнце — 620, а на поверхности так называемых нейтронных звезд, которые по массе примерно такие же, как Солнце, но имеют радиус всего в десять километров, эта скорость достигает половины скорости света — 150 тысяч километров в секунду. Представим себе, рассуждал П. Лаплас, что мы возьмем небесное тело, на поверхности которого вторая космическая скорость уже превышает скорость света. Тогда свет от такой звезды не сможет улететь в космос из-за действия тяготения, не сможет достичь далекого наблюдателя и мы не увидим звезду, несмотря на то, что она излучает свет! Если увеличивать массу небесного тела, добавляя к нему вещество с той же самой средней плотностью, то вторая космическая скорость увеличивается во столько же раз, во сколько возрастает радиус или диаметр. Теперь понятен вывод, сделанный П. Лапласом: чтобы тяготение задержало свет, надо взять звезду с веществом той же плотности, что и Земля, а диаметром в 250 раз больше солнечного, то есть в 27 тысяч раз больше земного. Действительно, вторая космическая скорость на поверхности такой звезды будет тоже в 27 тысяч раз больше, чем на поверхности Земли, и. примерно сравняется со скоростью света: звезда перестанет быть видимой. Это было блестящим предвидением одного из свойств чёрной дыры — не выпускать свет, быть невидимой. Справедливости ради надо отметить, что П. Лаплас был не единственным ученым и формально даже не самым первым, кто сделал подобное предсказание. Сравнительно недавно выяснилось, что в 1783 году с аналогичным утверждением выступал английский священник и геолог, один из основателей научной сейсмологии, Дж. Мичелл. Его аргументация была очень похожа на аргументацию П. Лапласа. Сейчас между французами и англичанами идет иногда полушутливая, а иногда серьезная полемика: кого следует считать первооткрывателем возможности существования невидимых звезд — француза П. Лапласа или англичанина Дж. Мичелла? В 1973 году известные английские физики-теоретики С. Хоукинг и Г. Эллис в книге, посвященной современным специальным математическим вопросам структуры пространства и времени, приводили работу фрнцуза П. Лапласа с доказательством возможности существования черных звезд; тогда о работе Дж. Мичелла еще не было известно. Осенью 1984 года известный английский астрофизик М Рисе,выступая на конференции в Тулузе, сказал, что хотя это не очень удобно говорить на территории Франции, но он должен подчеркнуть, что первым предсказал невидимые звезды англичанин Дж. Мичелл, и продемонстрировал снимок первой страницы соответствующей его работы. Это историческое замечание было встречено и аплодисментами и улыбками присутствующих. Как тут не вспомнить дискуссии между французами и англичанами о том, кто предсказал положение планеты Нептун по возмущениям в движении Урана: француз У. Леверье или англичанин Дж. Адаме? Как известно, оба ученых независимо правильно указали положение новой планеты. Тогда больше повезло французу У. Леверье. Такова участь многих открытий. Часто их делают почти одновременно и независимо разные люди Обычно приоритет признается за тем, кто глубже проник в суть проблемы, но иногда это просто капризы фортуны. Но предвидение П. Лапласа и Дж. Мичьлла еще не было настоящим предсказанием черной дыры. Почему? Дело в том, что во времена П Лапласа еще не было известно, что быстрее света в природе ничто не может двигаться. Обогнать свет в пустоте нельзя! Это было установлено А Эйнштейном в специальной теории относительности уже в нашем веке. Поэтому для П. Лапласа рассматриваемая им звевда была только черной (несветящейся), и он не мог знать, что такая звезда теряет способность вообще как-либо “общаться” с внешним миром, что-либо “сообщать” далеким мирам о происходящих на ней событиях. Инычи словами, он еще не знал, что это не только “черная”, но и “дыра”, в которую можно упасть, но невозможно выбраться. Теперь мы знаем, что если из какой-то области пространетва не может выйти свет, то, значит, и вообще ничто не может выйти, и такой объект мы называем черной дырой. Другая причина, из-за которой рассуждения П. Лапласа нельзя считать строгими, состоит в том, что он рассматривал гарвитационные поля огромной силы, в которых падающие тела разгоняются до скорости света, а сам выходящий свет может быть задержан, и применял при этом закон тяготения Ньютона. А. Эйнштейн показал” что для таких полей теория тяготения Ньютона неприменима, и создал новую теорию, справедливую для сверхсилых, а также для быстроменяющихся полей (для которых ньютоновская теория также неприменима!), и. назвал ее общей теорией относительности. Именно выводами этой теории надо пользам ваться для доказательства возможности существования черных дыр и для изучения их свойств. Общая теория относительности — это изумительная теория. Она настолько глубока и стройна, что вызывает чувство эстетического наслаждения у всякого, кто знакомится с ней. Советские физики Л. Ландау и Е. Лифшиц в своем учебнике “Теория поля” назвали ее “самой красивой из всех существующих физических теорий”. Немецкий физик Макс Борн сказал об открытии теории относительности: “Я восхищаюсь им как творением искусства”. А советский физик В. Гинзбург писал, что она вызывает “...чувство... родственное тому, которое испытывают, глядя на самые выдающиеся шедевры живописи, скульптуры или архитектуры”. Многочисленные попытки популярного изложения теории Эйнштейна, конечно, могут дать общее впечатление о ней. Но, честно говоря, оно столь же мало похоже на восторг от познания самой теории, как знакомство с репродукцией “Сикстинской мадонны” отличается от переживания, возникающего при рассмотрении подлинника, созданного гением Рафаэля. И тем не менее, когда нет возможности любования подлинником, можно (и нужно!) знакомиться с доступными репродукциями, лучше хорошими (а бывают всякие). Для понимания невероятных свойств черных дыр нам необходимо сказать кратко о некоторых следствиях общей теории относительности Эйнштейна. ГРАВИТАЦИОННЫЙ РАДИУС Чем же отличается теория тяготения Эйнштейна от теории Ньютона? Начнем с простейшего случая. Предположим, что мы находимся на поверхности сферической невращающейся планеты и измеряем силу притяжения этой планетой какого-либо тела с помощью пружинных весов. Мы знаем, что согласно закону Ньютона эта сила пропорциональна произведению массы планеты на массу тела и обратно пропорциональна квадрату радиуса планеты. Радиус планеты: можно определить, например, измеряя длину ее экватора и деля на 2я. А что говорит о силе притяжения теория Эйнштейна? Согласно ей сила будет чуточку больше, чем вычисленная по формуле Ньютона. Мы потом уточним, что значит это “чуточку больше”. Представим себе теперь, что мы можем постепенно уменьшать радиус планеты, сжимая ее и сохраняя при этом ее полную массу. Сила тяготения будет нарастать (ведь радиус уменьшается). По Ньютону, при сжатии вдвое сила возрастает вчетверо. По Эйнштейну, возрастав ние силы опять же будет происходить чуточку быстрее. Чем меньше радиус планеты, тем больше это отличие. Если мы сожмем планету настолько, что поле тяготения станет сверхсильным, то различие между величиной силы, рассчитываемой по теории Ньютона, и истинным ее значением, даваемым теорией Эйнштейна, нарастает чрезвычайно. По Ньютону, сила тяготения стремится к бесконечности, когда мы сжимаем тело в точку (радиус близок к нулю). По Эйнштейну, вывод совсем другой: сила стремится к бесконечности, когда радиус тела становится равным так называемому гравитационному радиусу. Этот гравитационный радиус определяется массой небесного тела. Он тем меньше, чем меньше масса. Но даже для гигантских масс он очень мал. Так, для Земли он равен всего одному сантиметру! Даже для Солнца гравитационный радиус равен только 3 километрам. Размеры небесных тел обычно много больше их гравитационных радиусов. Например, средний радиус Земли составляет 6400 километров, радиус Солнца 700 тысяч километров. Если же истинные радиусы тел много больше их гравитационных, то отличие сил, рассчитанных по теории Эйнштейна и теории Ньютона, крайне мало. Так, на поверхности Земли это отличие составляет одну миллиардную часть от величины самой силы. Только когда радиус тела при его сжатии приближается к гравитационному радиусу, в столь сильном полетя готения различия нарастают заметно, и, как уже гово-рилось, при радиусе тела, равном гравитационному, истинное значение силы поля тяготения становится бесконечным. Прежде чем обсуждать, к каким следствиям это ведет, познакомимся с некоторыми другими выводами теории Эйнштейна. Суть ее заключается в том, что она неразрывно связала геометрические свойства пространства и течение времени с силами гравитации. Эти связи сложны и многообразны. Отметим пока лишь только два важных обстоятельства. Согласно теории Эйнштейна время в сильном поле тяготения течет медленней, чем время, измеряемое вдали от тяготеющих масс (где гравитация слаба). О том, что время может течь по- разному, современный читатель, конечно, слышал. И все же к этому факту трудно привыкнуть. Как может время течь по-разному? Ведь согласно нашим интуитивным представлениям время — это длительность, то общее, что присуще всем процессам. Оно подобно реке, текущей неизменно. Отдельные процессы могут течь и быстрее и медленнее, мы можем на них влиять, помещая в разные условия. Например, можно нагреванием ускорить течение химической реакции или замораживанием замедлить жизнедеятельность организма, но движение электронов в атомах при этом будет протекать в прежнем темпе. Все процессы, как нам представляется, погружены в реку абсолютного времени, на течение которой, казалось бы, ничто влиять не может. Можно, по нашим представлениям, убрать из этой реки вообще все процессы, и все равно время будет течь как пустая длительность. Так считалось в науке и во времена Аристотеля, и во времена И. Ньютона, и позже — вплоть до А. Эйнштейна. Вот что пишет Аристотель в своей книге “Физика”: “Время, протекающее в двух подобных и одновременных двиижениях, одно и то же. Если бы оба промежутка времени не протекали одновременно, они все-таки были бы одинаковы... Следовательно, движения могут быть разные и независимые друг от друга. И в том и в другом случае время абсолютно одно и то же”. Еще выразительнее писал И. Ньютон, считая, что говорит об очевидном: “Абсолютное, истинное, математическое время, взятое само по себе, без отношения к какому-нибудь телу, протекает единообразно, соответственно своей собственной природе”. Догадки о том, что представления об абсолютном времени отнюдь не столь очевидны, иногда высказывались и в давние времена. Так, Лукреции Кар в I веке до нашей эры писал в поэме “О природе вещей”: “Время существует не само по себе... Нельзя понимать время само по себе, независимо от состояния покоя и движения тел”. Но только А. Эйнштейн доказал, что никакого абсолютного времени нет. Течение времени зависит от движения и, что сейчас для нас особенно важно, от поля тяготения. В сильном поле тяготения все процессы, абсолютно все, будучи самой разной природы, замедляются для стороннего наблюдателя Это и значит, что время — то есть то общее, что присуще всем процессам, — замедляется. Замедление это обычно невелико. Так, на поверхности Земли время протекает медленнее, чем в далеком космосе, всего на ту же одну миллиардную часть, как и в случае с вычислением силы тяготения. Хочется особенно подчеркнуть, что такое ничтожное замедление времени в поле тяготения Земли непосредственно измерено. Измерено замедление времени и в поле тяготения звезд, хотя обычно гам оно тоже крайне мало. В очень сильном поле тяготения замедление заметно больше и становится бесконечно большим, когда радиус тела сравнивается с гравитационным. Второй важный вывод теории Эйнштейна состоит в том, что в сильном поло тяготения меняются геометрические свойства пространства Эвклидова геометрия, столь нам привычная, оказывается уже несправедливой. Это означает, например, что сумма углов в треугольнике не равна двум прямым углам, а длина окружности не равна расстоянию ее от центра, умноженному на 2пи. Свойства обычных геометрических фигур становятся такими же, как будто они начерчены не на плоскости, а на искривленной поверхности. Поэтому и говорят, что пространство “искривляется” в гравитационном поле. Разумеется, это искривление заметно только в сильном поле тяготения, если размер тела приближается к его гравитационному радиусу. Конечно, представление об искривлении самого пространства так же трудносовместимо с нашими укоренившимися интуитивными представлениями, как и представление о разном течении времени. Столь же определенно, как и о времени, И. Ньютон писал о пространстве: “Абсолютное пространство, по своей собственной природе независимое от всякого отношения к внешним предметам, остается неизменным и неподвижным”. Пространство представлялось ему как некая бесконечная “сцена”, на которой разыгрываются “события”, никак не влияющие на эту “сцену”. Еще первооткрыватель неэвклидовой, “искривленной” геометрии — Н. Лобачевский высказывал мысль о том, что в некоторых физических ситуациях может проявляться его — Н. Лобачевского — геометрия, а не геометрия Эвклида. А. Эйнштейн своими расчетами показал, что пространство действительно “искривляется” в сильном поле тяготения. Этот вывод теории также подтвержден прямыми экспериментами. Почему же мы с таким трудом воспринимаем выводы общей теории относительности о пространстве и времени? Да потому, что повседневный опыт человечества, и даже опыт точной науки, на протяжении веков имел дело только с условиями, когда изменения свойств времени и пространства совершенно незаметны и посему полностью пренебрегались. Все наши знания основываются на повседневном опыте. Вот мы и привыкли к тысячелетней догме об абсолютно неизменяемых пространстве и времени. Наступила наша эпоха. Человечество в своих познаниях столкнулось с условиями, когда влиянием материи на свойства пространства и времени пренебрегать нельзя. Несмотря на инертность нашего мышления, мы должны привыкнуть к такой необычности. И теперь новое поколение людей уже гораздо легче воспринимает истины теории относительности (основы специальной теории относительности изучают сейчас в школе!), чем это было несколько десятилетий назад, когда теорию Эйнштейна с трудом воспринимали даже самые передовые умы Сделаем еще одно замечание о выводах теории относительности. Ее автор показал, что свойства пространства и времени не только могут меняться, но что пространство и время объединяются вместе в единое целое — четырехмерное “пространство время” Искривляется именно это единое многообразие. Конечно, наглядные представления в такой четырехмерной сверхгеометрии еще более трудны и мы здесь не будем на них останавливаться. Вернемся к полю тяготения вокруг сферической массы. Так как геометрия в сильном поле тяготения неэвклидова, искривленная, то надо уточнить, что такое радиус окружности, например, экватора планеты. В обычной геометрии радиус можно определить двояко: во-первых, это расстояние точек окружности от центра, во-вторых, это длина окружности, деленная на 2пи. Но в неэвклидовой геометрии эти две величины не совпадают из-за “кривизны” пространства. Использование именно второго метода определения радиуса тяготеющего тела (а не самого расстояния от центра до окружности) имеет ряд преимуществ. Для измерения такого радиуса не надо приближаться к центру тяготеющих масс. Последнее весьма важно, например, для измерения радиуса Земли было бы весьма сложно проникнуть в ее центр, но не очень сложно измерить длину экватора. Для Земли и нет никакой необходимости непосредственно измерять расстояние до центра, ибо поле тяготения Земли невелико, и для нас с большей точностью справедлива геометрия Эвклида, а длина экватора, деленная на 2пи, равна расстоянию до центра. В сверхплотных звездах с сильным полем тяготения это, однако,'не так: разница в “радиусах”, определенных разными способами, может быть весьма заметной Более того, как мы увидим далее, в ряде случаев достигнуть центра тяготения принципиально невозможно Поэтому мы всегда будем понимать под радиусом окружности ее длину, деленную на 2пи. Рассматриваемое нами поле тяготения вокруг сферического невращающегося тела получило название поля Шварцшильда, по имени ученого, который сразу же после создания Эйнштейном теории относительности решил ее уравнения для данного случая. Немецкий астроном К Шварцшильд был одним из творцов современной теоретической астрофизики, им выполнен ряд ценных работ в области практической астрофизики и других разделов астрономии На заседании Прусской академии наук, посвященной памяти К. Шварцшильда, умершего в возрасте всего 42 лет, так оценивал А. Эйнштейн его вклад в науку: “В теоретических работах Шварцшильда особенно поражают уверенное владение математическими методами исследования и та легкость, с которой он постигает существо астрономической или физической проблемы. Редко встречаются столь глубокие математические познания в сочетании со здравым смыслом и такой гибкостью мышления, как у него. Именно эти дарования позволили ему выполнить важные теоретические работы в тех областях, которые отпугивали других исследователей математическими трудностями. Побудительной причиной его неиссякаемого творчества, по-видимому, в гораздо большей степени можно считать радость художника, открывающего тонкую связь математических понятий, чем стремление к познанию скрытых зависимостей в природе”. К. Шварцшильд получил решение уравнений Эйнштейна для поля тяготения сферического тела в декабре 1915 года, через месяц после завершения А. Эйнштейном публикации своей теории. Как мы уже говорили, эта теория очень” сложна из-за совершенно новых, революционных понятий, но, оказывается, ее уравнения еще очень сложны, так сказать, чисто технически. Если формула закона тяготения И. Ньютона знаменита своей классической простотой и краткостью, то в случае новой теории для определения поля тяготения надо решить систему десяти уравнений, каждое из которых содержит сотни (!) слагаемых И это не просто алгебраические уравнения, а дифференциальные уравнения в частных производных второго порядка. В наше время для оперирования с подобными задачами используется весь арсенал электронных вычислительных машин Во времена К. Шварцшильда, разумеется, ничего подобного не было и единственными инструментами были перо и бумага. Но надо сказать, что и сегодня работа в области теории относительности требует иногда долгих и кропотливых математических преобразований вручную (без электронной машины), являющихся часто нудными и однообразными из-за огромного количества членов в формулах. Но без чернового труда не обойтись. Я часто предлагаю студентам (а иногда аспирантам и научным работникам), покоренным фантастичностью общей теории относительности, познакомившимся с ней по учебникам и желающим в ней работать, конкретно вычислить своими руками хоть одну сравнительно простую величину в задачах этой теории. Не все после многодневных (а иногда и гораздо более долгих!) вычислений столь же горячо продолжают стремиться посвятить свою жизнь этой науке. В оправдание такой “жесткой” проверки на любовь скажу, что я сам прошел через подобное испытание. (Кстати, согласно преданиям в былые времена и обычная человеческая любовь подвергалась испытаниям подвигами.) В студенческие годы моим учителем по теории относительности был известный специалист и очень скромный человек А. Зельманов. Для моей дипломной работы он поставил передо мной задачу, связанную с удивительным свойством поля тяготения — возможностью “уничтожить” его в любом месте по своему желанию. “Как? — воскликнет читатель. — Ведь в учебниках сказано, что от тяготения в принципе нельзя загородиться никакими экранами, что выдуманное фантастом Г. Уэллсом вещество “кэй-ворит” является чистейшим вымыслом, невозможным в реальности!” Все это так, и если оставаться неподвижным, например, относительно Земли, то силу ее тяготения не уничтожить. Но действие этой силы можно полностью устранить, начав свободно падать! Тогда наступает невесомость. В кабине космического корабля с выключенными двигателями, летящего по орбите вокруг Земли, нет силы тяжести, вещи и сами космонавты плавают в кабине, не ощущая никакой тяжести. Мы все много раз видели это на экранах телевизоров в репортажах с орбиты. Заметим, что никакое другое поле, кроме поля тяготения, не допускает подобного простого “уничтожения”. Электромагнитное поле, например, так убрать нельзя. Со свойством “устранимости” тяготения связана сложнейшая проблема теории — проблема энергии поля тяготения. Она, по мнению некоторых физиков, не решена и до сих пор. Формулы теории позволяют вычислить для какой-либо массы полную энергию ее гравитационного поля во всем пространстве. Но нельзя указать, где конкретно находится эта энергия, сколько ее в том или ином месте пространства. Как говорят физики, нет понятия плотности гравитационной энергии в точках пространства. Мне в моей дипломной работе предстояло показать прямым вычислением, что известные в то время математические выражения для плотности энергии гравитационного поля бессмысленны даже для наблюдателей, не испытывающих свободного падения, скажем, для наблюдателей, стоящих на Земле и явно чувствующих силу, с которой планета их притягивает. Математические выражения, с которыми мне предстояло работать, были еще более громоздкими, чем уравнения поля тяготения, о которых мы говорили выше. Я даже просил А. Зельманова дать мне еще кого-нибудь в помощники, который делал бы эти же вычисления параллельно, ведь я мог ошибиться. А. Зельманов вполне определенно отказал мне. “Вы должны это сделать сами”, — был его ответ. Когда все уже было позади, я увидел, что потратил на эту рутинную работу несколько сотен часов. Почти все вычислении пришлось провести дважды, а некоторые и больше. Ко дню защиты диплома темп работы стремительно возрастал, подобно скорости свободно падающего тела в полэ тяготения. Правда, надо заметить, что суть работы состояла не только в прямых вычислениях. По ходу дела надо было еще думать и решать принципиальные вопросы. Это была моя первая публикация по общей теории относительности. Но вернемся к работе К. Шварцшильда. Он с помощью изящного математического анализа решил задачу для сферического тела и переслал ее А. Эйнштейну для передачи Берлинской академии. Решение поразило А. Эйнштейна, так как сам он к тому времени получил лишь приближенное решение, справедливое только в слабом поле тяготения. Решение же К. Шварцшильда было точным, то есть справедливым и для сколь угодно сильного поля тяготения вокруг сферической массы; в этом было его важное значение. Но ни А. Эйнштейн, ни сам К. Шварцшильд тогда еще не знали, что в этом решении содержится нечто гораздо большее. В нем, как выяснилось позже, содержится описание черной дыры. А теперь продолжим разговор о второй космической скорости. Какую скорость согласно уравнениям Эйнштейна надо придать ракете, стартующей с поверхности планеты, чтобы она, поборов силы тяготения, улетела в космос? Ответ оказался чрезвычайно прост. Здесь справедлива та же формула, что и в ньютоновской теории. Значит, вывод П. Лапласа о невозможности для света уйти от компактной тяготеющей массы подтвердился теорией тяготения Эйнштейна, согласно которой вторая космическая скорость должна быть равна скорости света как раз на гравитационном радиусе. Сфера с радиусом, равным гравитационному, получила название сферы Шварцшильда. ПРЕДСКАЗАНИЕ Итак, согласно теории Эйнштейна, как только радиус небесного тела становится равным его гравитационному радиусу, свет не сможет уйти с поверхности этого тела к далекому наблюдателю, то есть оно станет невидимым. Но читатель наверняка уже обратил внимание, что это чрезвычайно необычное свойство далеко не единственное из тех “чудес”, которые должны произойти с телом, размеры которого сравнялись с гравитационным радиусом. Согласно сказанному в предыдущем разделе сила тяготения на поверхности звезды с радиусом, равным гравитационному, должна стать бесконечно большой, так же как и бесконечно большим должно быть ускорение свободного падения. К чему это может привести? Чтобы ответить на этот вопрос, вспомним сначала, почему обычные звезды и планеты не сжимаются к центру под действием тяготения, а представляют собой равновесные тела. Сжатию к центру препятствуют силы внутреннего давления вещества. В звездах это давление газа с очень высокой температурой, стремящееся расширить звезду. В планетах типа Земли это силы натяжения, упругости, давления, также препятствующие сжатию. Равенство сил тяготения и указанных противоборствующих сил как раз и обеспечивает равновесие небесного тела. Противоборствующие тяготению силы зависят "от состояния вещества: от его давления и температуры. При его сжатии они увеличиваются. Однако если сжать вещество до какой-то конечной (не бесконечно большой) плотности, то они останутся также конечными. Иначе обстоит дело с силой тяготения. С приближением размера небесного тела к гравитационному радиусу тяготение стремится, как мы знаем, к бесконечности. Теперь оно не может быть уравновешено противоборствующей конечной силой давления, и тело должно неудержимо сжиматься к центру под его действием. Итак, важнейший вывод теории Эйнштейна гласит: сферическое тело, радиус которого равен гравитационному радиусу и меньше, не может находиться в покое, должно сжиматься к центру. “Но позвольте, — спросит читатель, — если на гравитационном радиусе сила тяготения бесконечна, то какова она станет, как только тело уменьшится до размеров меньше гравитационного радиуса Ответ довольно очевиден. До сих пор мы говорили о силе тяготения на поверхности статического, не сжимающегося в данное время тела. Но она зависит от состояния движения. Как мы уже говорили выше, при свободном падении наступает состояние невесомости — свободно падающее тело вообще не испытывает действия гравитационной силы. Поэтому на поверхности свободно сжимающегося тела не ощущается никакой силы тяготения (и вне сферы Шварцшильда, и внутри ее). Увлекаемое тяготением вещество не может остановиться на сфере Шварцшильда (оно испытало бы тогда бесконечную силу тяготения). Тем более не может оно остановиться внутри сферы Шварцшильда. Любая частица, например ракета, со сколь угодно сильным двигателем, оказавшись от тяготеющего центра на расстоянии меньше гравитационного радиуса, должна неудержимо падать к этому центру. Итак, мы получили ответ на вопрос о том, к чему ведет бесконечное нарастание гравитационной силы с приближением тела к сфере Шварцшильда: к катастрофическому, неудержимому его сжатию. Физики называют это явление релятивистским коллапсом. Таким образом, достаточно сжать тело до размеров гравитационного радиуса, а дальше оно само будет неудержимо сжиматься. Так возникает объект, который впоследствии получил название черной дыры. Описанный нами процесс релятивистского гравитационного коллапса впервые был строго рассчитан с помощью уравнений общей теории относительности американскими физиками Р. Оппенгеймером и Г. Волковым в 1939 году. Их статья является образцом краткости и ясности изложения. Полностью и строго описывая суть явления, она занимает всего несколько страниц. Имя Р. Оппенгеймера хорошо известно не только физикам, но и широкой общественности. Он участвовал в создании американской атомной бомбы, в 1943—1945 годах возглавлял знаменитую Лос-Аламосскую научную лабораторию. Но впоследствии понял, какую опасность человечеству несет создание водородной бомбы и гонка вооружений, выступил за использование атомной - энергии только в мирных целях и в 1953 году был снят со всех постов как неблагонадежный американец. Работу Р. Оппенгеймера и Г. Волкова следует считать строгим предсказанием возможности возникновения черных дыр. Само название “черная дыра” появилось гораздо позже — в конце 60-х годов. Придумал его американский физик Д. Уилер. До этого они известны были под разными именами. Например, у нас их называли “коллапсара-ми”, однако выяснилось, что это слово звучит не очень благозвучно по-английски. Впрочем, с названием “черная дыра”, несмотря на его точность и образность, тоже бывали казусы. Закончим этот раздел следующим замечанием. Черную дыру можно в принципе сделать искусственно. Для этого надо сжать любую массу до размеров гравитационного радиуса, дальше она сама будет сжиматься, испытывая гравитационный коллапс. Правда, на этом пути лежат огромные технические трудности. Чем меньшую массу мы хотим превратить в черную дыру, тем до меньших размеров ее необходимо сжать, поскольку гравитационный радиус прямо пропорционален массе. Так, мы знаем, что гравитационный радиус Земли равен примерно одному сантиметру. А чтобы превратить в черную дыру, скажем, гору размером в миллиард тонн, пришлось бы ее сжать до размера атомного ядра! В последующих разделах мы увидим, что во Вселенной большие массы могут самопроизвольно превращаться в черные дыры в ходе естественной эволюции. Однако, прежде чем говорить об этом, продолжим знакомство с удивительными особенностями черных дыр. |