Молодая гвардия
Скачать 1.18 Mb.
|
ГЛАВА 2. МЕХАНИКА ВСЕЛЕННОЙ ВСЕЛЕННАЯ В ПРОШЛОМ Факт расширения Вселенной означает то, что в прошлом она была совсем не похожа на то, что мы видим сегодня. Раз галактики удаляются друг от друга, то в прошлом они должны были практически соприкасаться, а еще раньше не было отдельных галактик. Поделив расстояние между галактиками на скорость их удаления, получаем время, прошедшее с начала расширения. Мы. говорили, что галактики на расстоянии миллиона световых лет (10 19 километров) удаляются со скоростью около 25 километров в секунду. После деления первого числа на второе получаем 13 миллиардов лет. Так как для вдвое более далеких галактик и скорость удаления вдвое больше, то и для них после деления мы получим то же самое число. Значит, все галактики начали разлетаться 13 миллиардов лет назад. Мы помним, однако, что в определении расстояния до галактик могут быть некоторые ошибки. Поэтому в оценке времени, прошедшего с начала расширения, тоже есть некоторая неопределенность. Можно сказать, что эта эпоха отстоит от нас в прошлом на 10—20 миллиардов лет. В расчетах мы принимали, что галактики движутся с постоянными скоростями. В действительности скорость расширения тормозится тяготением. Однако учет этого обстоятельства мало меняет числа, приведенные выше. Интересно сопоставить найденное нами время, прошедшее с начала расширения, с возрастом отдельных объектов во Вселенной. Например, возраст так называемых шаровых звездных скоплений в Галактике оценивается в 10—14 миллиардов лет. Возраст нашей Земли и Солнца около 5 миллиардов лет. Мы видим, что и возраст нашей планеты и, по-видимому, возраст скоплений звезд лишь немногим меньше времени, прошедшего с начала расширения Вселенной. Итак, в прошлом, 10—20 миллиардов лет назад, вблизи момента начала расширения плотность вещества во Вселенной была, гораздо больше сегодняшней. Отдельные галактики, отдельные звезды и т. д. не могли существовать как изолированные тела. Вся материя находилась в состоянии непрерывно распределенного однородного вещества. Лишь позже, в ходе расширения, оно распалось на отдельные комки, что привело к образованию отдельных небесных тел. К этому вопросу мы еще вернемся. Сразу же возникает целый ряд других вопросов: насколько достоверен вывод о начале расширения, о состоянии огромной плотности всего вещества (как говорят, о сингулярном состоянии), какие процессы протекали в этом сверхплотном веществе, что заставило вещество Вселенной расширяться, наконец, что было до начала расширения, до момента сингулярности?! Разумеется, все это чрезвычайно важно и интересно, и мы по мере изложения разберем эти проблемы. ГРАВИТАЦИЯ ПУСТОТЫ Начало истории научной идеи о гравитации пустоты, или, на современном научном языке, — вакуума, которую мы изложим в этом параграфе, связано все с тем же конфликтом между традиционной верой в неизменность Вселенной и ее нестационарностью, неумолимо вытекающей из теории тяготения. Закон всемирного тяготения гласит, что любые материальные тела притягивают друг друга. А гравитирует ли вакуум? Этот вопрос в современной физике был поставлен А. Эйнштейном еще в 1917 году. Что такое гравитация вакуума? Почему возник такой вопрос? Какие данные физических экспериментов или астрономических наблюдений заставили его поставить эту проблему? Оказывается, никаких прямых данных не было, а точнее говоря, именно отсутствие в ту нору данных о движении галактик привело А. Эйнштейна к мысли о гравитации вакуума. Дело обстояло следующим образом. Вскоре после создания общей теории относительности он попытался построить на ее основе математическую модель Вселенной. Это происходило до работ А. Фридмана, до открытия Э. Хабблом красного смещения в спектрах галактик, и им владела идея стационарности, неизменности мира: “Небеса длятся от вечности к вечности”. Однако мы видели, что закон тяготения требует нестацирнарности Вселенной. Чтобы уравновесить силы тяготения и сделать мир стационарным, надо ввести силы отталкивания, не зависящие от вещества. Исходя из таких соображений, А. Эйнштейн ввел космическую силу отталкивания, которая делала мир стационарным. Ускорение” которое космическая сила отталкивания должна сообщить телам, универсально, оно не зависит от масс тел, а только от расстояния, их разделяющего. А. Эйнштейн показал, что сила отталкивания должна быть пропорциональна расстоянию, мечоду телами. Коэффициент пропорциональности называют космологической постоянной.Чтобы вмежгалактических просторах уравновесить силу тяготения обычной материи силами отталкивания, космологическая постоянная должна бы быть очень мала. Мы позже остановимся вкратце на возможных физических причинах возникновения сил отталкивания. Сейчас только скажем, что эта причина связана с квантовыми процессами, происходящими в вакууме. В принципе силы отталкивания, если они, конечно, существуют в природе, можно было бы обнаружить в до-статочно точных лабораторных опытах. Однако малость величины космологической, постоянной делает задачу ее лабораторного обнаружения совершенно безнадежной. Действительно, легко подсчитать, что при свободном падении тела на поверхность Земли добавочное ускорение, сообщаемое силами отталкивания, на 30 порядков (!) меньше самого ускорения свободного падения. Даже в масштабе. Солнечной системы или всей нашей Галактики эти силы ничтожно мадь по сравнению с силами тяготения, Так, нетрудно подсчитать, что ускорение, сообщаемое Земле тяготением Солнца, равно 0,5 см/с 2 . В то же время ускорение космического отталкивания между Землей и Солнцем в 10 22 раз меньше! Разумеется, это отталкивание (если оно есть вообще) никак не сказывается на движении тел Солнечной системы и может быть обнаружено только при исследовании движений самых отдаленных наблюдаемых галактик. Так в уравнениях тяготения Эйнштейна появилась космологическая постоянная, описывающая силы отталкивания вакуума. Действие этих сил столь же универсально, как и сил всемирного тяготения, то есть оно не зависит от физической природы тела, на котором проявляется, поэтому логично назвать это действие гравитацией вакуума, хотя обычно под гравитацией понимают притяжение, а здесь мы имеем отталкивание. Через несколько лет после работы А. Эйнштейна была создана, как мы уже знаем, теория Фридмана. После чего А. Эйнштейн стал склоняться к мысли, что космологическую постоянную не следует вводить в уравнения тяготения, если их решение .для всего мира можно получить в без этой постоянной. После открытия красного смещения в спектрах галактик, доказывающего расширение Вселенной, какие-либо основания предполагать, что в природе существуют космические силы отталкивания, отпали. Правда, решение, описывающее расширяющийся мир, можно получить и для уравнений с космологической постоянной. Для этого достаточно предположить, что силы тяготения и отталкивания не компенсируют точно друг друга; тогда преобладающая сила Приведет к нестанционарности. Это было отмечено еще в пионерских работах А. Фридмана. Наблюдения красного смещения во времена Э. Хаббла были недостаточно точны, чтобы определить, какое решение осуществляется в природе: с космологической постоянной или без нее. Тем не менее многие физики с неприязнью поглядывали на космологическую постоянную в уравнениях, поскольку она осложняла теорию и ничем не была, оправдана. Сам А. Эйнштейн и многие другие физики предпочитали писать уравнения тяготения без нее,, и Он даже назвал введение космологической постоянной в свои уравнения “самой грубой ошибкой в своей Жизни”. Мы увидим в дальнейшем, что то, что он считал своей ошибкой, на самом деле являлось первым шагом к по-ниманию природы физических взаимодействий элементарных частиц, к пониманию природы пустоты — физического вакуума. Но в начале нашего века его отказ от космологической постоянной казался естественным. Однако космологи 30-х годов не отказались столь поспешно от космологической постоянной. Для сохранения ее у них были серьезные основания. Вспомним, что первые определения постоянной Хаббла давали значения, завышенные раз в десять. Если бы мы с ее помощью рассчитали время, прошедшее с начала расширения Вселенной, то получили бы всего 1—2 миллиарда лет вместо правильного значения около 10—20 миллиардов лет. Два миллиарда лет — срок очень короткий. Во-первых, он оказывался даже меньше возраста Земли. Во-вторых, что гораздо более существенно, возраст звезд и звездных систем тогда ошибочно оценивался в десять тысяч миллиардов лет, то есть на четыре порядка больше времени расширения Вселенной. Сегодня мы знаем, что время с начала расширения занижено примерно в 10 раз, а возраст звезд, наоборот, завышен более чем на два порядка. И с сегодняшней точки зрения никакого противоречия между этими возрастами нет. Однако в 30-е годы указанное различие рассматривалось как серьезное противоречие. Для приведения в соответствие времени расширения Вселенной с возрастом звезд была привлечена космологическая постоянная. Так идея универсального космического отталкивания начала переживать период “второй молодости”. Посмотрим, как введение космологических сил отталкивания может привести к резкому изменению времени расширения Вселенной. Предположим, что космологическая постоянная отлична от нуля. Пусть мир расширяется от состояния очень высокой плотности. Так как вначале плотность вещества велика, силы тяготения, пропорциональные плотности и тормозящие расширение, много больше сил отталкивания. В ходе расширения рано или поздно плотность упадет настолько, что силы тяготения и отталкивания сравняются. В этот момент мир по инерции будет расширяться без ускорения, с постоянной скоростью. Если эта скорость очень мала, то очень долго будет поддерживаться почти полное равенство сил тяготения и отталкивания и, следовательно, период почти полной остановки расширения, или, как его называют, задержки расширения, будет длительным. Затем плотность вещества все же постепенно упадет и силы тяготения станут меньше сил отталкивания. Теперь мир уже будет расширяться ускоренно под действием сил отталкивания. Подбирая параметры модели, можно сделать задержку расширения очень длительной. Согласно этой гипотезе задержка в расширении была в прошлом. Сегодня мир расширяется ускоренно. Так, введение космологической постоянной растягивает время расширения Вселенной и может привести его в соответствие с возрастом звезд. Оценки постоянной Хаббла были пересмотрены в 50-х годах. Еще раньше, в конце 30-х годов, было установлено, что превращение водорода в гелий является основным источником энергии звезд, а в 50-х годах построена современная теория звездной эволюции. Все противоречия с возрастами отпали, отпала и необходимость в космологической постоянной. Уже во второй раз! А в 1967 году начался период “третьей молодости” идеи о космологической постоянной. К этому времени астрономы открыли и исследовали необычайные объекты — квазары, о которых мы кратко говорили в первой части. Квазары до сих пор хранят множество тайн и нерешенных проблем. Мы остановимся здесь лишь на двух особенностях квазаров. Во-первых, они обладают огромной светимостью и видны с расстояний даже больше, чем далекие галактики. Чем дальше квазар, тем должен быть меньше его видимый блеск на небе, ослабленный этим расстоянием. В то же время квазары должны подчиняться законам расширения Вселенной и чем дальше, тем с большей скоростью удаляться от нас, а значит, сильнее должно быть в их спектрах “красное смещение”. Итак, при изучении квазаров, ожидалось, что чем меньше их видимый блеск, тем сильнее красное смещение. Ничего подобного не обнаружили! Для объяснения этого американские ученые В. Петросян, Э. Сальпетер и П. Шекерс предположили, что возможной причиной отсутствия зависимости между видимым блеском квазаров и красным смещением в их спектрах могут явиться космические силы отталкивания. Поясним это. Американские ученые подчеркивали, что квазары, как правило, наблюдаются на огромных расстояниях, гораздо дальше, чем самые далекие галактики, доступные телескопам. Когда мы наблюдаем квазары с большим красным смещением, то есть на больших расстояниях, мы видим свет, давно испущенный. Если он покинул квазары в эпоху, соответствующую задержке расширения Вселенной в теории с космологической постоянной, то и у более близкого, и у более далекого квазара красное смещение будет почти одним и тем же. Это происходит потому, что наблюдения относятся к периоду, когда мир почти не расширялся. Действительно, пусть свет покинул квазар в эпоху задержки расширения. Он долго идет в почти не расширяющейся Вселенной и поэтому не краснеет. Когда этот луч находится еще на пути к нам, из более близкого квазара выходит луч, который затем одновременно с первым уже в нашу эпоху достигнет наблюдателя на Земле. Оба луча идут вместе в почти стационарной Вселенной и не краснеют. Свет обоих квазаров одинаково покраснеет позже — после окончания эпохи задержки расширения, уже в расширяющейся Вселенной. Следовательно, и относительно близкий, а потому яркий квазар, и далекий — слабый будут обладать почти одинаковым красным смещением. В результате многие квазары будут обладать похожими красными смещениями в спектрах, а видимый блеск их будет весьма различным, и никакой зависимости между этими величинами не окажется. Аргументы в пользу картины расширения Вселенной с длительной задержкой в прошлом (а значит, в пользу существования космологической постоянной) приводили советские астрофизики И. Шкловский и Н. Кардашев, использовавшие другие особенности в спектрах квазаров. Была ли в действительности задержка в расширении Вселенной в прошлом? Ответ могли дать только новые наблюдения. Со времени дискуссии этой проблемы прошло почти двадцать лет. Проведено много новых наблюдений квазаров. Постепенно аргументы в пользу задержки расширения начали “рассасываться”, как говорят астрономы-профессионалы на своем жаргоне. Новые наблюдения показали, что отсутствие зависимости между видимым блеском квазаров и красным смещением связано с тем, что истинная светимость их очень и очень разнообразна. Их никак нельзя рассматривать как “стандартные свечи” (в отличие от ярчайших галактик в скоплениях) и поэтому нельзя ожидать проявления рассматриваемой зависимости. Точно так же, как если бы мы взяли свечи самой разной истинной яркости, то их видимый блеск никак не характеризовал бы их расстояние от нас. Отпали и другие аргументы в пользу расширения с задержкой, а с ними отпала и необходимость в существовании космологической постоянной. Отпала уже в третий раз! Но, как говорят, джинна, выпущенного из бутылки, нелегко загнать обратно. Идея о том, что космологическая постоянная не равна нулю, оказалась живучей. Ясно одно, что если космологическая постоянная и отличается от нуля, то очень мало. Но доказать, чти она точно равна нулю, путем наблюдении, конечно, очень трудно. Может быть, действительно существуют космические силы отталкивания? Это заставляет физиков задуматься над природой таких сил. Подробнее мы будем говорить об этом в разделе “Почему Вселенная такая”. Сейчас отметим только, что энергия взаимодействия виртуальных частиц вакуума (об этом мы говорили в главе “Черные дыры и кванты” в 1-й части) приводит к тому, .что в пустоте может быть все время хоть и малая, но отличная от нуля плотность энергии. Свойства вакуума таковы, что -вместе с плотностью энергии должны появиться и натяжения (как могут быть натяжения в упругом теле). Вот присутствие этих натяжений и приводит, как можно показать, к возникновению универсальных гравитационных сил отталкивания, о которых мы говорили. Подчеркнем, что физикам далёко еще не все ясно с природой вакуума. В последнее время развитие теории физики элементарных частиц делает вероятным заключение о том, что в нашу эпоху и в обозримом прошлом силы гравитации вакуума вряд ли играли заметную роль в эволюции Вселенной. Но вот вблизи самого начала расширения, в первые мгновения, возможно, их роль была определяющей, свойства вакуума там были совсем другие. Об этом, как уже сказано, мы договорим далее, а здесь заметим, что настало, по-видимому, время “четвертой молодости” идеи о космологической постоянной. Наверное, у читателя осталось чувство какого-то скептицизма по отношению к Специалистам, которые то находят аргументы в пользу идеи о гравитации вакуума, то находят аргументы против нее, то опять за, и так много раз. Не подрывают ли такие колебания веру в надежность научных исследований, веру в науку? О похожей ситуации. высказался в уже цитированном памфлете С. Ликок: “Не подумайте, что я высказываю неверие в науку или неуважение к ней (в наши дни это было бы так же чудовищно, как во времена Исаака Ньютона не верить в Святую Троицу). Но все же... Так что подхватывайте свои книжки, следите за развитием науки и ждите следующего астрономического конгресса”. Ну что ж, если оставить шутки, то в истории науки такое положение известно. К какой-нибудь научной идее подходят с разных сторон, на разном уровне развития физики, с разной степенью вооруженности. Штурмуют сложнейшую проблему много раз, пока не решат ее. И, как правило, за ней появляются проблемы еще более глубокие и сложные. Загадка вакуума относится к такого рода проблемам. БУДУЩЕЕ РАСШИРЯЮЩЕЙСЯ ВСЕЛЕННОЙ Итак, вероятно, космологическая постоянная не влияет сегодня на расширение Вселенной. Будем считать ее равной нулю, как это полагал А. Эйнштейн, и посмотрим, как будет протекать расширение в будущем. Расширение Вселенной протекает с замедлением из-за тяготения, и для будущего есть две возможности. Если тяготение слабо тормозит расширение, то в будущем оно будет продолжаться неограниченно. Расстояние между скоплениями галактик неограниченно увеличивается. Силы тяготения во Вселенной зависят от средней плотности вещества. (Средней называется плотность, если “размазать” все небесные тела, все облака газа, все галактики равномерно по пространству.) Чем больше средняя плотность, тем больше силы. Значит, при достаточно малой средней плотности масс расширение будет продолжаться вечно. Но возможно, что плотность вещества сегодня достаточно велика, а значит, велико замедление расширения. В результате расширение прекращается в будущем и сменяется сжатием. Ситуация здесь полностью аналогична той, когда ракета, разогнанная до определенной скорости, должна покинуть небесное тело. Так, скорость в 12 километров в секунду достаточна, чтобы покинуть Землю и улететь в космос, ибо эта скорость больше второй космической скорости для Земли. Однако эта скорость недостаточна для того, чтобы покинуть поверхность Юпитера, где вторая космическая скорость, как мы писали, 61 километр в секунду. Тело, брошенное на Юпитере со скоростью 12 километров в секунду вверх, после подъема снова упадет на него. Значит, во Вселенной при нынешней ее скорости расширения (нынешней постоянной Хаббла) есть критическое значение плотности вещества, отделяющее один случай от другого. Вычисления показывают, что это критическое значение — десять атомов водорода в среднем в одном кубическом метре (или равное количество другого вещества) . Если истинное значение плотности во'Вселенной больше этого, то расширение сменится в будущем сжатием, если меньше, то расширение вечно. Что имеет место в действительности? Оказывается, ответить на этот вопрос не так-то просто. Для этого надо учесть все виды материи во Вселенной, ибо все они создают поле тяготения. Учесть вещество, входящее в звезды, галактики, светящийся газ можно (хотя это трудная задача). Но, возможно, имеется много труднонаблюдаемой материи между галактиками, которая не излучает (или плохо излучает) свет и не поглощает его. Учет таких масс, как их называют — скрытых масс, крайне труден. Поэтому точного и полного ответа на поставленный вопрос нет до сих пор. Можно сказать лишь следующее. Если учитывать только светящиеся галактики, то средняя плотность вещества во Вселенной в тридцать раз меньше критического значения. Если бы не было труднонаблюдаемых форм материи, то расширение Вселенной продолжалось бы неограниченно. ПРОБЛЕМА СКРЫТОЙ МАССЫ Астрономы имеют серьезные основания подозревать, что в пространстве между галактиками может быть много труднонаблюдаемых форм материи — много скрытой массы. Может быть, невидимые ореолы скрытой массы окружают даже отдельные галактики. Одним из поводов для такого подозрения являются результаты измерений масс скоплений галактик. Измерения проводятся следующим образом. Правильные скопления имеют симметричную форму, распределение галактик в них плавно спадает от центра к краю, и поэтому есть все основания считать, что скопления находятся в равновесном состояние когда энергия движений галактик уравновешена силой взаимного тяготения всех масс, входящих в скопление. В этом случае, как мы уже говорили в главе о способахизмерения масс, можно определить силу тяготения, а значит, и полную массу всех видов материи, входящих в скопление, ибо все они участвуют в создании поля тяготения. Такое определение, выполненное, например,- для скопления галактик в созвездии Волосы Вероники, приводит к значению 2*10 15 масс Солнца. Но можно определить массу скопления и другим путем. Для этого надо подсчитать полное число всех галактик, входящих в скопление, и помножить на массу средней галактики. Если так сделать, то получается масса раз в десять меньше, чем при определении первым способом. Значит, в скоплении должна быть невидимая масса между галактиками, которая и создает дополнительное поле тяготения и учитывается в первом способе, но не входит в галактики и не учитывается во втором способе. Подобные же результаты получаются и при исследовании других скоплений галактик. Конечно, при применении обоих способов возможны неизбежные ошибки. Но вряд ли эти ошибки столь велики, что могут объяснить все расхождение в результатах. Тщательный анализ показывает, что “свалить” всю вину за получение парадоксально большой массы в скоплениях на подобные ошибки крайне трудно. Полученные выводы заставляют со всей серьезностью отнестись к поискам скрытой массы, причем не только в скоплениях галактик, но я между скоплениями. В какой форме может существовать скрытая масса? Может быть, это межгалактический газ? Ведь объем пространства между галактиками гораздо больше объема пространства, приходящегося на галактики! Поэтому межгалактический газ, концентрация которого хотя и много меньше, чём у газа внутри галактик, может в результате все же давать гигантские массы. Подчеркнем, что межгалактический газ является не единственным кандидатом в скрытые массы. Эти массы могут быть обусловлены и другими видами материи. Такую возможность мы разберем далее. Теперь же вернемся к газу и посмотрим, как его можно обнаружить. Прежде всего напомним, что газ во Вселенной в основном состоит из водорода. Следовательно, чтобы установить наличие газа в межгалактическом пространстве, надо искать водород. В зависимости от физических условий газ может быть в нейтральном и ионизованном со-стояниях. Начнем с оценки возможного количества нейтрального водорода. Если свет от далекого источника идет через газ о нейтральными атомами водорода, то происходит поглощение атомами излучения на определенных частотах. По атому поглощению можно пытаться обнаружить нейтральный водород на огромных просторах между скоплениями галактик. В качестве источников света используются далекие квазары. Предпринятые попытки показали, что межгалактического водорода в нейтральном состоянии крайне мало. По массе его, по крайней мере, в десятки тысяч раз меньше, чем светящегося вещества в галактиках. Таким образом, межгалактический газ, если он и есть, должен быть ионизованным, а значит, и сильно нагретым. Как показывает анализ, для этого необходимы температуры больше миллиона градусов. Не следует удивляться, что, несмотря на такую температуру, этот газ практически невидим. Дело в том, что плотность его очень мала, газ прозрачен, излучает мало видимого света. Но все же эта ионизованная высокотемпературная плазма испускает достаточно много ультрафиолетового излучения и мягких рентгеновских лучей. Горячий газ можно искать по ультрафиолетовому излучению. Есть и другие способы поисков горячего газа между скоплениями. Однако все методы оказались не очень чувствительны. Горячий газ между скоплениями галактики до сих пор не обнаружен. Вопрос о количестве такого газа, о том, больше ли его усредненная плотность, чем усредненная плотность вещества, входящего в галактики, остается открытым. Обратимся теперь к газу в скоплениях галактик. Радионаблюдения показывают, что нейтрального водорода в скоплениях ничтожно мало. Однако с помощью рентгеновских телескопов, установленных на спутниках, был обнаружен горячий ионизованный газ в богатых скоплениях галактик. Оказалось, что этот газ нагрет до температуры в миллион градусов. Его полная масса может доходить до 10 13 масс Солнца. Число внушительное, но мы видели выше, что полная масса скопления в созвездии Девы гораздо больше — превышает 10 15 масс Солнца. Таким образом, наличие горячего газа в скоплениях никак не исчерпывает проблемы скрытой массы. Несколько лет назад у этой пресловутой проблемы выявился еще один аспект. В последнее время появляется все больше сторонников идеи о том, что галактики могут быть окружены огромными массивными коронами слабо светящихся объектов, которые по их свечению обнаружить крайне трудно. Это могут быть, например, звезды низкой светимости. Масса короны должна влиять на движение карликовых галактик — спутников основной галактики. Именно по этому влиянию и пытаются обнаружить в настоящее время короны галактик. Возможно, что учет этих корон существенно изменит оценку масс галактик в скоплениях и решит проблему скрытой массы. Однако в настоящее время вопрос о коронах галактик еще не решен. Нам остается еще разобрать вопрос об экзотических кандидатах на роль скрытой массы, таких, как нейтрино, гравитационные волны, а также другие виды материи. К подобным экзотическим возможностям мы вернемся в главе “Нейтринная Вселенная”. Пока же подведем итог. Общая масса светящейся материи недостаточна, чтобы ее тяготение затормозило расширение Вселенной и обратило его в сжатие. О скрытой массе мы пока знаем слишком мало. Если она и есть, то ее примерно столько, чтобы сделать общую плотность материи во Вселенной равной критической, может быть, чуть больше. Вероятнее всего, нашей Вселенной предстоит расширение неограниченное или очень большое время в будущем. КРИВОЕ ПРОСТРАНСТВО Мы сейчас увидим, что вопрос о средней плотности материи во Вселенной имеет решающее значение не только для проблемы будущего Вселенной, но и для проблемы ее протяженности. Возможно, эта фраза вызовет настороженность у читателя. Как может возникнуть у материалиста вопрос о протяженности Вселенной? Разве не ясно, что пространство Вселенной продолжается во все стороны вплоть до бесконечности? Казалось бы, любое иное мнение ведет к представлению о существовании какой-то границы материального мира, за который начинается нечто нематериальное. На протяжении длительной истории науки только бесконечно простирающееся во все стороны пространство представлялось единственно приемлемым для всякого стихийного материалиста. Аргументы, доказывающие это, были четко сформулированы еще гениальным философом древнего Рима Лукрецием Каром две тысячи лет назад. Он писал в поэме “О природе вещей”: Нет никакого конца ни с одной стороны у Вселенной, Ибо иначе края непременно она бы имела. Края ж не может иметь, очевидно, ничто, если только Вне его нет ничего, что его отделяет, чтоб видно Было, доколе следить за, ним наши чувства способны. ОТКРЫТИЕ РАСШИРЕНИЯ ВСЕЛЕННОЙ Если ж должны мы признать, что нет ничего за Вселенной. ОТКРЫТИЕ РАСШИРЕНИЯ ВСЕЛЕННОЙ Нет ни краев у нее, Я нет ни конца, ни предела И безразлично, в какой ты находишься часта Вселенной: ОТКРЫТИЕ РАСШИРЕНИЯ ВСЕЛЕННОЙ Где бы ты ни был, везде, с того места, что ты занимаешь, Все бесконечной она остается во всех направлениях. С тех пор подобные аргументы о бесконечности и безграничности пространства аккуратно повторялись на протяжении веков. С сегодняшней точки зрения такое представление кажете” наивным. Первый удар. по старым взглядам был ндвесен . теоретическим открытием возможности геометрии, отличной от геометрии Эвклида, которая изучается в школе. Это было сделано великими математиками прошлого дека Н. Лобачевским, Я. Бонн, .Б. Римадом, К. Гауссом. Что такое неэвкдидова геометрия? Если обратиться к планиметрии, то, оказывается, понять это чрезвычайно просто: эвклидова, геометрия изучает свойства геометрических фигур на плоской поверхности, неэвклидова геометрия изучает свойства фигур на искривленных поверхностях, например, на сфере или, скажем, на седлообразной поверхности. На таких искривленных поверхностях уже не может быть прямых линий и свойства геометрических фигур иные, чем на плоскости. Прямые линии заменяются здесь линиями, которые являются кратчайшими расстояниями между точками. Они называются геодезическими линиями. На сфере, например, геодезические линии — это дуги больших кругов. Примером их могут служить меридианы на, поверхности Земли. На сфере мы можем чертить треугольники, стороны которых являются геодезическими, рисовать окружности, можем изучать их свойства. Все это легко себе представить. Трудности с представлением, возникают, когда мы обращаемся .уже не к двумерной поверхности, а к неэвклидову трехмерному пространству. Втаком пространстве свойства призм, шаров и других фигур отличаются от тех, что мы изучали в школе. По аналогии с поверхностями мы можем сказать, что такое пространство искривлено. Однако эта, аналогия вряд ли поможет нам представить наглядно искривленное трехмерное пространство. Мы живем в трехмерном пространстве, выпрыгнуть из него не можем (так .как вне пространства ничего нет), поэтому нельзя спрашивать: “В чем,изгибается наше реальное пространство?” Суть кривизлы пространства заключается в изменении его геометрических свойств по сравнению со свойствами плоского пространства, где справедлива геометрия Эвклида. Читатель, наверное, помнит из раздела о черных дырах, что общая теория относительности приводит к заключению об искривленности пространства в сильных полях тяготения, об изменении его геометрических свойств. Когда мы обращаемся к огромным просторам Вселенной, то чем больший масштаб рассматриваем, тем больше охватываемая масса вещества и тем сильнее поле тяготения. В больших масштабах мы должны обращаться к теории Эйнштейна, должны учитывать искривление пространства. И здесь мы сталкиваемся с удивительным обстоятельством. Чтобы понять суть нового явления, вернемся снова к искривленным двумерным поверхностям. Возьмем кусочек плоскости. Если мы будем добавлять к нему соседние части плоскости все большего размера, то получим всю плоскость, неограниченно простирающуюся в бесконечность. Выделим теперь на поверхности шара маленький кусочек. Если он очень мал; мы даже не заметим его искривленность. Добавим теперь к этому кусочку соседние, охватывая все большие области. Теперь искривленность уже заметна. Продолжая эту операцию, мы увидим, что наша поверхность из-за кривизны замыкается сама на себя, образуя замкнутую сферу. Нам не удалось продолжить искривленную таким образом поверхность неограниченно до бесконечности. Она замкнулась. Сфера имеет конечную площадь поверхности, но не имеет границ. Плоское существо, ползущее по сфере, никогда не встретит препятствия, края, границы. Но сфера не бесконечна! Мы наглядно видим, что из-за замкнутости поверхность может быть безгранична, но не бесконечна. Вернемся к трехмерному пространству. Оказывается, его искривленность может быть подобна искривленности сферы. Оно может замыкаться самб на себя, оставаясь безграничным, но конечным по объему (подобно тому, как сфера конечна по площади). Конечно, наглядное представление здесь крайне трудно. Но такое может быть. Теперь нам понятно, что аргументы в строфах Лукреция Кара направлены против ограниченности пространства каким-либо барьером, но не против конечности объема пространства — ведь пространство может быть безграничным, но конечным по объему. Модели Вселенной, построенные А. Фридманом, показывают, что такой случай может иметь место в действительности. Для этого средняя плотность вещества во Вселенной должна быть больше критической. В этом случае пространство оказывается конечным, замкнутым; такую модель называют закрытой. Если средняя плотность материи во Вселенной равна критической, то геометрия пространства эвклидова. Такое пространство называют плоским. Оно простирается во все стороны до бесконечности и объем его бесконечен. Наконец, если плотность матери меньше критической, то геометрия пространства тоже искривленная. Но в этом случае геометрия подобна уже не геометрии на сфере, а геометрии на седлообразной поверхности. Это пространство так же неограниченно простирается во все стороны, не замыкается. Его объем бесконечен. Такую модель Вселенной называют открытой. Каков же наш мир? Напомним, что до сих пор неизвестна надежно средняя плотность вещества в пространстве, неизвестно, больше она критической или меньше. Поэтому неизвестно, открыта ли наша Вселенная или закрыта. Идея возможности закрытого мира с замкнутым пространством, конечно, очень необычна. Как и идея эволюции Вселенной, эта идея с трудностями пробивала себе дорогу. Возражения против нее отчасти были обусловлены всей той же инертностью мышления и предвзятыми соображениями, а отчасти недостаточной образованностью сторонников утверждения, что только бесконечный объем пространства совместим с материализмом. Я помню один из таких жарких споров в мои студенческие времена, проходивший на 6-м Всесоюзном совещании по вопросам космогонии в Москве. Вот цитата из выступления одного из философов на том совещании: “В самом деле, если предположить, что Вселенная конечна в пространстве, то сразу же мы сталкиваемся с необходимостью ответить на такие неразрешимые вопросы: как можно представить себе конечную в объеме Вселенную, что лежит за ее пределами...” Как видите, аргументация здесь гораздо примитивнее, чем у Лукреция Кара и основана только на обращении к здравому смыслу, что, как уже давно известно, не является аргументом в споре. Никаких идеалистических выводов из факта, возможности замкнутости пространства, конечно, не следует. Материализм исходит из факта объективности пространства, из того, что материя может существовать только в пространстве. “В мире нет ничего, кроме движущейся материи, и движущаяся материя не может двигаться иначе, как в пространстве и во времени” (В. И. Ленин). Установление же конкретных свойств пространства, и, в частности, бесконечен его объем или конечен, — дело естественных наук. Характерна в. этом отношении реплика академика В. Гинзбурга на одной из научных дискуссий: “Не количеством кубических сантиметров определяется идеология!” Подобные споры ушли в прошлое, и дело за наукой — определить истинную структуру мира. Искривленность пространства определяется степенью отличия плотности материи от критического значения. Чем сильнее отличие, тем больше искривление. Наблюдения показывают, что если плотность материи и отличается от критической, то не очень сильно и искривленность сказывается только на огромных расстояниях во многие миллиарды световых лет. В замкнутом пространстве Вселенной кратчайшая линия — геодезическая — оказывается замкнутой, подобно большому кругу на сфере (например, подобно экватору). Скользя вдоль такого пути, мы возвращаемся в исходную точку, точно так же, как, двигаясь по экватору и обойдя Землю, приходим в исходный пункт нашего путешествия. Возможно, будущие наблюдения покажут, что плотность материи больше критической и Вселенная замкнута. В этом случае объем Вселенной конечен, но все же огромен, размеры Вселенной колоссальны. Длина “экватора” — геодезической линии, охватывающей всю Вселенную, — никак не меньше нескольких десятков миллиардов световых лет, а вероятно, гораздо больше. Конечно, есть не меньшие основания ожидать, что плотность материи во Вселенной не превышает критическую и объем Вселенной бесконечен. В следующем разделе мы увидим, что различие между открытой и закрытой Вселенной не столь драматично, как это кажется с первого взгляда. ГОРИЗОНТ Вселенная начала расширяться около 15 миллиардов лет назад. Значит, во Вселенной не может быть объектов более старых, чем 15 миллиардов дет, не может быть источников, которые светят дольше 15 миллиардов лет. Это обстоятельство ведет к важнейшему следствию — к наличию горизонта видимости во Вселенной. Чем дальше от нас находится галактика, тем больше времени потребовалось свету, Чтобы достичь наблюдателя. Свет, который сегодня достигает наблюдателя, покинул галактику в далеком прошлом. Вселенная, начала расширяться около 15 миллиардов лет назад. Свет, вышедший из какого-либо источника даже. вскоре, после начала расширения мира, успеет пройти лишь конечное расстояние во Вселенной — около 15 миллиардов световых лет. Точки пространства. Вселенной, лежащие от нас на этом расстоянии, называют горизонтом видимости. Области Вселенной, лежащие за горизонтом, сегодня принципиально не-наблюдаемы. Мы не можем увидеть более далекие галактики:, какими бы телескопами мы пи наблюдали, свет от галактик из-за горизонта просто не успел до нас дойти. Красное смещение света неограниченно нарастае г, когда мы наблюдаем объект, лежащий все ближе и ближе к, горизонту. На самом горизонте оно бесконечно. Такий образом, мы можем видеть только конечное число звезд и галактик во Вселенной. До создания теории расширяющейся Вселенной попытки рассмотрения бесконечного пространства, равномерно в среднем заполненного звездами, наталкивались на любопытный парадокс. Он заключается в следующем. В бесконечной Вселенной, заполненной звездами, луч зрения рано или поздно встретит светящуюся поверхность звезды. В этом случае все ночное небо должно сиять, как поверхность Солнца и звезд. Парадокс получил название фотометрического, и многие выдающиеся умы пытались его разрешить. После создания теории расширяющейся Вселенной парадокс разрешился сам собой. В расширяющейся Вселенной для каждого наблюдателя есть горизонт видимости. Поэтому он видит конечное число звезд, весьма редко разбросанных в пространстве. Наш взор, как правило, скользит мимо них и вплоть до горизонта, не упираясь ни в одну звезду. Поэтому ночное небо между звездами — темное. К тому же жизнь звезд ограничена. Горизонт видимости делает для нас не столь существенной разницу между закрытым и открытым миром. В обоих случаях мы видим ограниченную часть Вселенной с радиусом около 15 миллиардов световых лет. В замкнутом мире свет не успевает обойти мир к настоящему времени, и, конечно, невозможно увидеть свет от нашей собственной галактики, обошедшей весь мир. Увидеть “собственный затылок” невозможно в замкнутой Вселенной. Даже за весь период расширения от сингулярного состояния до смены расширения сжатием свет успевает пройти только половину замкнутого пространства и лишь на фазе сжатия сможет закончить полный обход мира... Горизонт видимости для каждого наблюдателя свой, где бы он ни был во Вселенной. Все точки однородной Вселенной равноправны. С течением времени горизонт каждого наблюдателя расширяется, к наблюдателю успевает доходить свет от все новых областей Вселенной. За 100 лет радиус горизонта увеличивается на одну стомиллионную долю своей величины. Еще одно замечание. Вблизи самого горизонта мы в принципе должны видеть вещество в далеком прошлом, когда плотность его была гораздо больше сегодняшней. Отдельных объектов тогда не было, а вещество было непрозрачным для излучения. К этому вопросу мы еще вернемся. |