Главная страница

Естествознание. Наиболее общие представления о жизни. Понятие жизнь. Основные признаки живого


Скачать 254.25 Kb.
НазваниеНаиболее общие представления о жизни. Понятие жизнь. Основные признаки живого
АнкорЕстествознание
Дата13.05.2023
Размер254.25 Kb.
Формат файлаdocx
Имя файла27.03.20-Estestvoznanie-D-19-1-Pereplyotchikova.docx
ТипУрок
#1126271

Название дисциплины: ОД 01.04. Естествознание

Номер группы: Д 19-1

Форма и дата занятия: комбинированное занятие, 27.03.2020

ФИО преподавателя: Переплётчикова А.В. asia79-72@mail.ru

Срок выполнения (сдачи): 31.03.20

Тема урока:  Наиболее общие представления о жизни. Понятие «жизнь». Основные признаки живого

Формулировка задания:

  1. Изучить лекционный материал

  2. Просмотреть видеоматериал «Уровни организации живой материи» по ссылке: https://www.youtube.com/watch?v=ueBDxqlp8DI.

  3. Составить конспект по презентации, ссылка https://cloud.mail.ru/public/4TKj/tSu45aicV (тетрадь)

  4. Заполнить таблицу органоидов клетки (тетрадь).

  5. Выполнить домашнее задание в тетради (на выполнение неделя).

  6. Выполненные задания отправить фотоотчетом до 31.03.20

Понятие «жизнь». Основные признаки живого

Задачи:

Обучающие: Показать многообразие живого мира, сформировать целостное (научное) определение жизни, выявить свойства живых систем, показать гармоничность всего живого и его целе­сообразность.

Развивающие: Способствовать развитию интеллектуальных умений и памяти; продолжить умение сравнивать и анализировать, выделять главное. Сформировать целостную картину мира.

Воспитательные: Способствовать формированию научного мировоззрения, реализовать экологическое и эстетическое воспитание, половое и трудовое воспитание.

Оборудование: Таблица «Основные свойства живого». Презентация.

Ход работы:

  1. Организационный момент

  2. Актуализация знаний(10 минут).

  3. Изучение нового материала (20 минут), (рассказ с элементами беседы).

Сегодня на уроки мы рассмотрим, что же такое понятие жизнь, и как можно определить и доказать является ли организм живым.

Понятие «жизнь». Основные признаки живого - запись в тетради

(Слайд 1).

Слово «биология» дословно переводится как «наука (логос) о жизни (био)». А что же такое жизнь? В разные времена ученые давали различные определения понятию жизнь. Познакомимся с некоторыми из них.

Вопрос: Как вы думаете, что такое жизнь?

Жизнь - способ существования белковых тел, существен­ным моментом которого является постоянный обмен веществ с окружающей их природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белков. (Ф. Энгельс)

Жизнь - самоподдержание, самовоспроизведение и само­развитие больших систем, элементарно состоящих из слож­ных органических молекул.

Жизнь - особая форма существования белковых тел.

Давайте более детально рассмотрим каждое из свойств: - запись в таблицу.

Основные свойства живых организмов



Свойство

Проявление свойства

1

Живые организмы имеют сходный химический состав и единый принцип строения.

  • На 98 % состоят из: углерода, кислорода, азота и водорода;

  • Имеют клеточное строение.

2

Все живые организмы представляют собой «открытые системы».

Устойчивы при непрерывном поступлении веществ и энергии.

3

Все живые организмы способны к обмену веществ с  окружающей средой: из нее они получают вещества, необходимые для жизни, а в нее выделяют продукты жизнедеятельности.

Обмен веществ обеспечивает постоянство химического состава организмов.

4

Живые организмы реагируют на изменение факторов окружающей их среды.

Реакция на внешнее воздействие.

5

Живые организмы развиваются.

Рост и развитие.

6

Все живое размножается.

Самовоспроизведение.

7

Все живые организмы обладают наследственностью и изменчивостью.

Приобретение новых признаков и свойств.

8

Живые    организмы приспособлены к определенной среде обитания.

Способность живых организмов, обитающих в непрерывно меняющихся условиях окружающей среды, поддерживать постоянство своего химического состава и интенсивность физиологических процессов.



  1. Живые организмы имеют сходный химический состав и единый принцип строения

Живые организмы «построены» из тех же химических элементов, что и объекты неживой природы. Однако соотношение их в живом и неживом различно. Живые организмы на 98% состоят из четырех элементов — углерода, кислорода, азота и водорода, которые участвуют в образовании сложных органических молекул (белки, нуклеиновые кислоты, углеводы, жиры) Все живые организмы имеют клеточное строение. Клетка является единой структурно-функциональной единицей, а также единицей развития всех живых организмов на Земле.

  1. Все живые организмы представляют собой «открытые системы», т. е. устойчивые лишь при условии непрерывного поступления в них энергии и вещества из окружающей среды

Зеленые растения используют солнечную энергию для синтеза органических веществ, из которых строится их тело. Другие организмы получают энергию в результате распада сложных органических веществ пищи на более простые.

Таким образом, живые организмы существуют до тех пор, пока в них поступают энергия (солнечная или химическая) и  питательные вещества извне.

  1. Все живые организмы способны к обмену веществ с  окружающей средой: из нее они получают вещества, необходимые для жизни, а в нее выделяют продукты жизнедеятельности

В неживой природе можно наблюдать, казалось бы, сходные процессы. Так, пламя костра или свечи никто не назовет живым. Однако в процессе горения поглощаются органические вещества (дрова, воск) и кислород воздуха, а выделяются углекислый газ и другие вещества. В основе работы многих механизмов, созданных человеком, также лежат «обменные процессы».

В отличие от обменных процессов в неживой природе живых организмов самыми важными стали процессы синтеза и распада.

Обмен веществ обеспечивает постоянство химического состава и строения организма, его рост, размножение и существование в непрерывно меняющихся условиях окружающей среды.

  1. Живые организмы реагируют на изменение факторов окружающей их среды

В процессе эволюции у живых организмов выработалась потребность избирательно реагировать на внешние воздействия. У одних реакции проявляются быстро (например, животные убегают, нападают, прячутся, сжимаются и т. д.), -- других — медленно (например, растения поворачивают листья к свету).

  1. Живые организмы развиваются

Развитие характерно как для живой, так и для неживой материи. Но живым организмам свойственно упорядоченное, постепенное и последовательное развитие. У каждого живого организма развитие связано с реализацией наследственной программы и обычно сопровождается увеличением его массы. Последнее происходит за счет образования новых молекул, элементарных клеточных структур и самих клеток.

Развитие характерно не только для отдельного организма, но и для живой природы в целом. В результате исторического развития, или эволюции, появилось все многообразие живых организмов на нашей планете.

  1. Все живое размножается Новые организмы — от бактерии до человека — возникают только в результате бесполого или полового размножения особей данного вида.

  2. Все живые организмы обладают наследственностью и изменчивостью

Наследственность — способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Информация о том, каким должен быть организм, закодирована в его генетическом материале — хромосомах и генах.

Хотя потомки похожи на родителей, двух совершенно одинаковых организмов не существует. Это объясняется тем, что в генетическом материале происходят случайные изменения, приводящие к появлению у организма новых признаков и свойств.

Изменчивость создает разнообразный материал для отбора наиболее приспособленных к конкретным условиям особей, а это, в свою очередь, приводит к появлению новых видов организмов.

  1. Живые    организмы приспособлены к определенной среде обитания

Даже по внешнему виду часто можно определить, какой образ жизни ведет данный организм. Например, вы сразу отличите хищную птицу от зерноядной, влаголюбивые растения от растений пустынь.

Таким образом, живые организмы резко отличаются от неживых систем сложностью строения и высокой упорядоченностью протекающих в них физиологических процессов. Эти отличия придают жизни качественно новые свойства.

Уровни организации живой материи.

Во всём многообразии живой природы можно выделить несколько уровней организации живого. Просмотр учебного фильма «Уровни организации живого» и на его основе составление краткого опорного конспекта.

Видео "Уровни организации живой материи" https://www.youtube.com/watch?v=ueBDxqlp8DI

1.     Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

2.     Клеточный. Клетка — структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.

3.     Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии — от момента зарождения до прекращения существования — как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций.

4.     Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция — надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования — процесс микроэволюции.

5.     Биогеоценотический. Биогеоценоз — совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.

6.     Биосферный. Биосфера — совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.
Клетка – единица строения и жизнедеятельности организма.

Биология клетки в общих чертах известна каждому из школьной программы. Предлагаю вам вспомнить изученное когда-то, а также открыть для себя что-то новое о ней.

Название "клетка" было предложено еще в 1665 году англичанином Р. Гуком. Однако лишь в 19 веке ее начали изучать систематически. Ученых заинтересовала, среди прочего, и роль клетки в организме. Они могут быть в составе множества различных органов и организмов (икринок, бактерий, нервов, эритроцитов) или же быть самостоятельными организмами (простейшими). Несмотря на все их многообразие, в функциях и строении их обнаруживается много общего.

Функции клетки. Все они различны по форме и зачастую по функциям. Могут отличаться довольно сильно и клетки тканей и органов одного организма. Однако биология клетки выделяет функции, которые присущи всем их разновидностям.

Именно здесь всегда происходит синтез белков. Этот процесс контролируется генетическим аппаратом. Клетка, которая не синтезирует белки, в сущности мертва.

Живая клетка - это та, компоненты которой все время меняются. Однако основные классы веществ, при этом, остаются неизменными. Все процессы в клетке осуществляются с использованием энергии. Это питание, дыхание, размножение, обмен веществ. Поэтому живая клетка характеризуется тем, что в ней все время происходит энергетический обмен. Каждая из них обладает общим важнейшим свойством – способностью запасать энергию и тратить ее.

Среди других функций можно отметить деление и раздражимость. Все живые клетки могут реагировать на химические или физические изменения среды, окружающей их. Это свойство называется возбудимостью или раздражимостью. В клетках при возбуждении меняется скорость распада веществ и биосинтеза, температура, потребление кислорода. В таком состоянии они выполняют функции, свойственные им.

Строение клетки. Ее строение довольно сложно, хотя она считается самой простой формой жизни в такой науке, как биология.

Клетки расположены в межклеточном веществе. Оно обеспечивает им дыхание, питание и механическую прочность.

Ядро и цитоплазма – основные составные части каждой клетки. Каждая из них покрыта мембраной, строительный элемент для которой - молекула. Биология установила, что мембрана состоит из множества молекул. Они расположены в несколько слоев. Благодаря мембране вещества проникают избирательно.

В цитоплазме находятся органоиды – мельчайшие структуры. Это эндоплазматическая сеть, митохондрии, рибосомы, клеточный центр, комплекс Гольджи, лизосомы.

Мембрана. При рассмотрении клетки растения в микроскоп (к примеру, корешка лука) можно заметить, что ее окружает довольно толстая оболочка. У кальмара имеется гигантский аксон, оболочка у которого совсем другой природы. Однако не она решает, какие вещества следует или не следует пускать в аксон. Функция оболочки клетки состоит в том, что она является дополнительным средством защиты клеточной мембраны. Мембрану называют "крепостной стеной клетки". Однако это справедливо лишь в том смысле, что она защищает и ограждает ее содержимое. И мембрана, и внутреннее содержимое каждой клетки состоят обыкновенно из одних и тех же атомов. Речь идет об углероде, водороде, кислороде и азоте. Эти атомы находятся в начале таблицы Менделеева. Мембрана представляет собой молекулярное сито, очень мелкое (толщина ее в 10 тысяч раз меньше толщины волоса). Ее поры напоминают узкие длинные проходы, сделанные в крепостной стене какого-нибудь средневекового города. Их ширина и высота меньше длины в 10 раз. Кроме того, отверстия в этом сите очень редки. У некоторых клеток поры занимают лишь одну миллионную долю от всей площади мембраны.

Ядро. Биология клетки интересна также с точки зрения ядра. Это самый большой органоид, первым привлекший внимание ученых. В 1981 году клеточное ядро было открыто Робертом Брауном, шотландским ученым. Этот органоид является своеобразной кибернетической системой, где происходит хранение, переработка, а затем передача в цитоплазму информации, объем которой очень велик. Ядро очень важно в процессе наследственности, в котором оно играет главную роль. Кроме того, оно выполняет функцию регенерации, то есть способно восстанавливать целостность всего клеточного тела. Этот органоид регулирует все важнейшие отправления клетки. Что касается формы ядра, чаще всего она бывает шарообразной, а также яйцевидной. Хроматин – важнейшая составная часть этого органоида. Это вещество, которое хорошо окрашивается особыми ядерными красками. Двойная мембрана отделяет ядро от цитоплазмы. Эта мембрана связана с комплексом Гольджи и с эндоплазматической сетью. На ядерной мембране имеются поры, через которые одни вещества легко проходят, а другим это сделать труднее. Таким образом, проницаемость ее избирательна. Ядерный сок – это внутреннее содержимое ядра. Он заполняет пространство, находящееся между его структурами. Обязательно в ядре присутствуют ядрышки (одно или несколько). В них образуются рибосомы. Имеется прямая связь между размером ядрышек и активностью клетки: ядрышки тем крупнее, чем активнее происходит биосинтез белка; и, напротив, в клетках с ограниченным синтезом они или вовсе отсутствуют, или невелики. В ядре находятся хромосомы. Это особые нитевидные образования. Кроме половых, в ядре клетки человеческого тела имеется по 46 хромосом. В них записана информация о наследственных задатках организма, которая передается потомству. У клеток обычно имеется одно ядро, однако есть и многоядерные клетки (в мышцах, в печени и др.). Если удалить ядра, оставшиеся части клетки сделаются нежизнеспособными.

Цитоплазма. Цитоплазма представляет собой бесцветную слизистую полужидкую массу. В ней содержится около 75-85 % воды, примерно 10-12 % аминокислот и белков, 4-6 % углеводов, от 2 до 3 % липидов и жиров, а также 1 % неорганических и некоторых других веществ. Содержимое клетки, находящееся в цитоплазме, способно двигаться. Благодаря этому органоиды размещаются оптимально, а биохимические реакции протекают лучше, как и процесс выделения продуктов обмена. Разные образования представлены в слое цитоплазмы: поверхностные выросты, жгутики, реснички. Цитоплазму пронизывает сетчатая система (вакуолярная), состоящая из уплощенных мешочков, пузырьков, канальцев, сообщающихся между собой. Они связаны с наружной плазматической мембраной.

Эндоплазматическая сеть. Этот органоид был назван так из-за того, что он находится в центральной части цитоплазмы (с греческого языка слово "эндон" переводится как "внутри"). ЭПС – очень разветвленная система пузырьков, трубочек, канальцев различной формы и величины. Они отграничены от цитоплазмы клетки мембранами. Различаются два вида ЭПС. Первый – гранулярная, которая состоит из цистерн и канальцев, поверхность которых усеяна гранулами (зернышками). Второй вид ЭПС – агранулярная, то есть гладкая. Гранами являются рибосомы. Любопытно, что в основном гранулярная ЭПС наблюдается в клетках зародышей животных, тогда как у взрослых форм она обычно агранулярная. Как известно, рибосомы являются местом синтеза белка в цитоплазме. Исходя из этого, можно сделать предположение, что гранулярная ЭПС бывает преимущественно в клетках, где происходит активный синтез белка. Агранулярная сеть, как считается, представлена в основном в тех клетках, где протекает активный синтез липидов, то есть жиров и различных жироподобных веществ. И тот и другой вид ЭПС не просто принимает участие в синтезе органических веществ. Здесь эти вещества накапливаются, а также транспортируются к необходимым местам. ЭПС также регулирует обмен веществ, который происходит между окружающей средой и клеткой.

Рибосомы. Это клеточные немембранные органоиды. Они состоят из белка и рибонуклеиновой кислоты. Эти части клетки до сих пор не до конца изучены с точки зрения внутреннего строения. В электронном микроскопе рибосомы выглядят как грибовидные или округлые гранулы. Каждая из них разделена на маленькую и большую части (субъединицы) с помощью желобка. Несколько рибосом часто объединяются нитью особой РНК (рибонуклеиновой кислоты), называемой и-РНК (информационной). Благодаря этим органоидам из аминокислот синтезируются белковые молекулы.

Комплекс Гольджи. В просветы канальцев и полостей ЭПС поступают продукты биосинтеза. Здесь они концентрируются в особый аппарат, называемый комплексом Гольджи. Этот аппарат находится вблизи ядра. Он принимает участие в переносе продуктов биосинтеза, которые доставляются к поверхности клетки. Также комплекс Гольджи участвует в их выведении из клетки, в образовании лизосом и т. д.. Этот органоид был открыт Камилио Гольджи, итальянским цитологом (годы жизни – 1844-1926). В честь него в 1898 году он был назван аппаратом (комплексом) Гольджи. Выработанные в рибосомах белки поступают в этот органоид. Когда они нужны какому-то другому органоиду, отделяется часть аппарата Гольджи. Таким образом, белок транспортируется в требуемое место.

Лизосомы. Рассказывая о том, как выглядят клетки и какие органоиды входят в их состав, необходимо обязательно упомянуть и о лизосомах. Они имеют овальную форму, их окружает однослойная мембрана. В лизосомах имеется набор ферментов, разрушающих белки, липиды, углеводы. Если лизосомная мембрана повреждена, ферменты расщепляют и разрушают содержимое, находящееся внутри клетки. В результате этого она гибнет.

Клеточный центр. Он имеется в клетках, которые способны делиться. Клеточный центр состоит из двух центриолей (палочковидных телец). Находясь возле комплекса Гольджи и ядра, он участвует в формировании веретена деления, в процессе деления клетки.

Митохондрии. К энергетическим органоидам относятся митохондрии и хлоропласты. Митохондрии – это своеобразные энергетические станции каждой клетки. Именно в них извлекается энергия из питательных веществ. Митохондрии имеют изменчивую форму, однако чаще всего это гранулы или нити. Число и размеры их непостоянны. Это зависит от того, какова функциональная активность той или иной клетки. Если рассмотреть электронную микрофотографию, можно заметить, что митохондрии имеют две мембраны: внутреннюю и наружную. Внутренняя образует выросты (кристы), устланные ферментами. Благодаря наличию крист общая поверхность митохондрий увеличивается. Это важно для того, чтобы деятельность ферментов протекала активно. В митохондриях ученые обнаружили специфические рибосомы и ДНК. Это позволяет этим органоидам самостоятельн.о размножаться в процессе деления клетки.

Хлоропласты Что касается хлоропластов, то по форме это диск или шар, имеющий двойную оболочку (внутреннюю и наружную). Внутри этого органоида также имеются рибосомы, ДНК и граны - особые мембранные образования, связанные как с внутренней мембраной, так и между собой. Хлорофилл находится именно в мембранах гран. Благодаря ему энергия солнечного света превращается в химическую энергию аденозинтрифосфат (АТФ). В хлоропластах она используется для синтеза углеводов (образуются из воды и углекислого газа).

Согласитесь, представленную выше информацию нужно знать не только для того, чтобы сдать тест по биологии. Клетка - это строительный материал, из которого состоит наш организм. Да и вся живая природа - сложная совокупность клеток. Как вы видите, в них выделяется множество составных частей. На первый взгляд может показаться, что изучить строение клетки - непростая задача. Однако если разобраться, эта тема не так уж и сложна. Ее необходимо знать, чтобы хорошо разбираться в такой науке, как биология. Состав клетки - одна из основополагающих ее тем.
Домашнее задание:

Самоконтроль знаний:

  1. Назовите признаки, отличающие живые организмы от неживой природы. Перечислите уровни организации живой природы.

  2. Перечислите основные химические элементы, из которых состоит живой организм.

  3. С чем связано развитие и многообразие живой природы?

  4. Как были открыты законы развития живых организмов?

  5. В чем отличие искусственного и естественного отборов?

Задание к картинке.

К номерам органоидов указать их названия


написать администратору сайта