с.р.вариант 4+ответы. Найдите величину угла
Скачать 91 Kb.
|
Ответы: 36 144 1600 67,5 13 18 42 Решение: 1. Углы AOD и DOB — смежные, вместе составаляют развёрнутый угол, следовательно, ∠AOD = 180° − ∠DOB = 180° − 108° = 72°. Поскольку OK — биссектриса угла AOD, ∠AOK = ∠KOD = ∠AOD/2 = 72°/2 = 36°. Ответ: 36. 2. Треугольник MON — равнобедренный. Тогда ∠MON = 180° − 2·18° = 144°. Ответ: 144. 3. Все стороны квадрата равны, поэтому сторона длина стороны квадрата равна 160:4=40. Найдём площадь квадрата как квадрат его стороны: S=40²=1600 Ответ: 1600. 4. Проведём вспомогательное построение. Заметим, что дуга BC составляет ровно четверть окружности, следовательно, она равна 360°/4 = 90°. Угол BAC — вписанный, поэтому он равен половине дуги, на которую опирается, значит, он равен половине дуги BC: 90°/2 = 45°. Треугольник ABC — равнобедренный, следовательно,: Ответ: 67,5. 5. Проверим каждое из утверждений. 1) «Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части» — верно по свойству равнобедренного треугольника. 2) «В любом прямоугольнике диагонали взаимно перпендикулярны» — неверно, это утверждение справедливо исключительно для ромба, а не для прямоугольника. 3) «Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу» — верно, т. к. окружность — множество точек, находящихся на заданном расстоянии от данной точки. Ответ: 13. 6. . Так как треугольник АВС равносторонний, то его медиана BH является и биссектрисой, и высотой. Тогда треугольник ABH - прямоугольный. Тогда: Ответ: 18 7. Так как ∠AOC и ∠AOB — смежные, ∠AOB = 84°. Центральный угол равен дуге на которую он опирается, поэтому градусная мера дуги AB равна 84°. Угол ACB — вписанный и равен половине дуги, на которую опирается, поэтому ∠ACB = 42°. Ответ: 42. |