Главная страница
Навигация по странице:

  • — Иммунная система организма направлена на то, чтобы уничтожать любые клетки, которые были или стали чужеродными, не так ли

  • Можно ли поверить волку, что на него охотятся

  • — Почему — Это все равно, что поверить волку, будто на него охотятся.— Но ведь на него действительно охотятся

  • — И вы поверите

  • — Почему же все–таки иммунный ответ при раке неэффективен Почему рак — это чуть ли не смертный приговор

  • — Почему же несправедлив

  • — Ну а почему неэффективен в случаях заболеваний, пусть даже это не правило, а исключения из него

  • Каковы же причины неполноценности иммунного ответа против растущей опухоли

  • — Наверное, это еще не умеют — Да, в отношении раковых антигенов не умеют.— А что же делают, чтобы стимулировать противораковый иммунитет

  • рак. Не может их увидеть


    Скачать 45.99 Kb.
    НазваниеНе может их увидеть
    Дата14.11.2022
    Размер45.99 Kb.
    Формат файлаdocx
    Имя файлаImmunologia_opukholi.docx
    ТипДокументы
    #788711
    страница1 из 4
      1   2   3   4

    Рак, аллергия и другие промахи иммунитета

    Раковые клетки возникают из клеток собственного тела. Значит, они свои, а не чужие. Значит, иммунная система не может их «увидеть».


    — Иммунная система организма направлена на то, чтобы уничтожать любые клетки, которые были или стали чужеродными, не так ли?

    Рак, аллергия и другие промахи иммунитета

    — Так.

    — Следовательно, прежде чем начать разговор о роли иммунной системы в противораковой защите, необходимо спросить, несут ли раковые клетки какие–то признаки чужеродности?

    — Совершенно верно. Этот вопрос первый. Но многим он кажется очевидным a priori, то есть без доказательств.

    — А мне так не кажется. Ведь раковые клетки возникают из клеток собственного тела. Значит, они свои, а не чужие. Значит, иммунная система не может их «увидеть», распознать и уничтожить.

    — Вы правы.

    Первым и обязательным условием для рассмотрения роли иммунной системы в противораковой защите является наличие у раковых клеток чуждых данному организму антигенов. Это очевидно, потому что в противном случае иммунной системе нечего будет уничтожать, ибо она истребляет только чужеродные субстанции. Поэтому вся проблема иммунологии опухолей началась с поисков раковых антигенов. Пионером в этой области был советский иммунолог Лев Александрович Зильбер.

    Еще в 1949 году Зильбер разработал метод, доказывающий антигенные различия между раковыми и нормальными клетками.

    Сообщение об этом было встречено скептически или «в штыки».

    Скептически — это понятно. В науке никогда не достаточно одного аргумента. Нужны дополнительные доказательства, подтверждения другими методами и другими авторами. «В штыки» потому, что сообщение Зильбера было воспринято как попытка доказать вирусную теорию возникновения рака. Впрочем, Зильбер был склонен считать именно так: коль скоро в опухоли обнаружены чужеродные белки, значит, это вирусы.

    Многие исследователи и врачи не могли принять такую точку зрения. Все знали, что рак не заразная болезнь и говорить о вирусе — возбудителе рака, подобном вирусу — возбудителю оспы, кори или гриппа, немыслимо. Ведь возникает же рак под влиянием внешних воздействий, например рак губы у курильщиков.

    Пятнадцать лет спустя, когда Зильбер разработал вирусо–генетическую теорию возникновения опухолей, дискуссия о существовании раковых антигенов подходила к концу. Их больше не оспаривали даже в самом простом варианте: для некоторых опухолей животных уже были открыты вирусы–возбудители.

    Вирусы, вызывающие развитие опухолей, получили название онкогенных, рождающих опухоли. Оказалось, однако, что вирус не просто заражает нормальную клетку. Он должен проникнуть в ядро и расположить свою нуклеиновую кислоту (свои гены) среди нуклеиновой кислоты (среди генов) этой клетки. Генетический код клетки, приказы, по которым строятся белки, изменяется. Она начинает строить свое тело по измененным схемам, по измененным приказам.

    В раковых клетках были выявлены и вирусные антигены, и антигены самих клеток, но построенные по измененным приказам. Это было подтверждением вирусо–генетической теории, которая предполагает не простое заражение вирусом, а сочетание вирусной инфекции с врожденными или приобретенными условиями, при которых вирус встраивается в святыню клетки, в ее генетический аппарат. Клетка становится генетически чужеродной. Не вирус, а клетка!

    Но если есть генетическая чужеродность, мы знаем, должен включаться иммунитет. Ибо для него все чуждое чуждо. Такую клетку необходимо уничтожить.

    Это не значит, что вирусная природа рака общепризнана. Иммунологи не утверждают этого. Им, собственно, безразлично, отчего изменяется клетка. Важен факт: раковая клетка несет признаки генетической чужеродности в виде так называемых раковых антигенов. Тем более что существуют раковые антигены невирусной природы.

    Когда онкогенный вирус внедряет свой генетический код (нуклеиновую кислоту) в аппарат наследственности той или иной клетки, эта клетка начинает вырабатывать новый, необычный для нее белок. Она синтезирует его «под диктовку» вирусной нуклеиновой кислоты. В результате у всех клеток вырабатывается один и тот же раковый белок. Одинаковый.

    Опухоль под влиянием вируса может возникнуть в разных местах тела, у разных индивидуумов одного и того же вида и даже у разных видов животных, а раковый антиген будет один и тот же. Это антиген, который «продиктован» генами вируса.

    Совсем иная картина наблюдается при индукции опухолей некоторыми химическими веществами. Вещества эти получили название канцерогенов от слов «канцер» (рак) и «ген» (рождать). Такими веществами являются метилхолантрен, бензпирен и много–много других. К физическим канцерогенам относятся все виды ионизирующих излучений.

    Если действию одного и того же канцерогена подвергнуть десяток совершенно одинаковых организмов, например, мышей одной и той же чистой линии, то каждая из 10 возникших опухолей будет иметь свой раковый антиген. У каждой опухоли свой антиген. Иначе говоря, один и тот же химический агент вызывает разные генетические изменения в разных клетках.

    Онкогенный вирус навязывает всем клеткам одинаковую программу. Канцероген действует по законам случайностей. У одних клеток одни изменения, у других другие. Генетики и онкологи изучают механизмы этого явления.

    Для иммунологов самое главное в том, что раковые клетки всегда несут на себе признаки чужеродности в виде раковых антигенов.


    Можно ли поверить волку, что на него охотятся?

    — Я не могу поверить, будто иммунная система защищает организм от раковых клеток только на основании того, что эти клетки имеют необычные антигены.


    — Почему?

    — Это все равно, что поверить волку, будто на него охотятся.


    — Но ведь на него действительно охотятся?

    — Тогда покажите охотников.


    — И вы поверите?

    — Поверю, но, весьма вероятно, возникнут новые вопросы.

    По–видимому, Горер — английский исследователь — был первым человеком, который еще в 1942 году доказал появление в крови животных–опухоленосителей антител против клеток опухолей. Конечно, сам по себе этот факт не доказывал, что иммунная система защищает организм от возможности возникновения опухолей. Тем более что в 1952 году молодой исследователь из Бар–Харбора Натан Каллис вместе со своим учителем Жоржем Снеллом, создателем многих пород чистолинейных мышей, столь необходимых для изучения проблемы опухолей, продемонстрировал весьма парадоксальную закономерность. Оказалось, что после прививки животным опухоли в их крови действительно появляются противоопухолевые антитела. Но если взять эту кровь и ввести другому животному, то потом ему легче привить опухоль и она быстрее растет. Антитела не тормозят, а усиливают рост опухоли. Этот феномен они назвали феноменом иммунологического усиления.

    Раковая опухоль

    Вот так противоопухолевая защита!

    Возникла весьма странная ситуация. С одной стороны, был доказан иммунный ответ на опухолевые клетки. С другой стороны, этот ответ не защищает от опухоли, а содействует ее росту. Часть исследователей потеряла интерес к противоопухолевому иммунитету. Другая часть осталась в сомнении: коль скоро иммунный ответ есть, должна быть и защита. Эта часть иммунологов или онкологов продолжала искать защитный иммунный ответ на прививку опухоли.

    Больше всех и наиболее убедительно преуспели американцы Ричард Прэн и Джералд Мэйн. У мышей они индуцировали химическим канцерогеном опухоль. Взяли кусочки этой опухоли и привили группе мышей той же генетически чистой линии, то есть тождественной по всем антигенам. Опухоли стали расти.

    Другой группе мышей той же линии они привили предварительно убитые кусочки опухоли. Кусочки через неделю рассосались. После того как кусочки рассосались, мышам ввели живые клетки этой же опухоли. Они рассосались тоже. Рак не возник. Значит, иммунитет все–таки создается! И как раз именно против опухолевых антигенов, потому что по всем другим антигенам клетки животных одной чистой линии идентичны.

    Проблема приобрела уверенную поступь. В нее включились тысячи исследователей. И следующая увлекательная история была рассказана миру шведскими иммунологами супругами Карлом и Ингегард Хеллстремами. Они разработали метод ингибиции (подавления роста) опухолевых клеток лимфоцитами in vitro, то есть в пробирке.

    Суть метода состоит в следующем. У животного–опухоленосителя берется кусочек опухоли, размельчается и приготавливается взвесь из отдельных опухолевых клеток. Эти клетки можно поместить в питательный раствор в пробирку или в специальную склянку (чашку с плоским дном). Микроскопические клетки садятся на дно и начинают размножаться. Через несколько дней невооруженным глазом видны колонии раковых клеток, которые так разрастаются, что сливаются вместе и затягивают дно чашки сплошным слоем, как пруд тиной. Только это не невинные водоросли, а рак…

    Хеллстремы добавили к этой культуре раковых клеток лимфоциты здорового животного. Ничего существенного не произошло. Лимфоциты не проявили никакой иммунной активности. Раковые клетки размножались и росли обычно. Тогда они решили испытать лимфоциты от опухоленосителя. Если иммунная система сопротивляется росту опухоли, то лимфоциты должны обладать убивающей активностью.

    Хеллстремы были в более выгодном положении, чем предшествующие исследователи. Они вели эти работы в 1969—1971 годах, когда уже было известно, что именно Т–лимфоциты после иммунизации приобретают способность убивать чужеродные клетки. Хеллстремы вводили мышам метилхолантрен — химическое соединение, вызывающее рак, — до тех пор, пока не возникла саркома, одна из форм самого злокачественного рака. Клетки этой саркомы они посеяли в чашки с питательной средой. После этого туда же добавили лимфоциты от нормальных мышей и мышей–опухоленосителей. Лимфоциты от последних оказались иммунными, они проявили противораковую активность — рост опухолевых клеток был значительно подавлен.

    Получив такие результаты, Хеллстремы провели серию исследований с раком кожи у кроликов. Особенность этой опухоли состоит в том, что у большинства животных она разрастается (персистирует), превращается в очень злокачественную карциному и убивает опухоленосителя. У части животных опухоль сама по себе уменьшается (регрессирует) и исчезает. Первая группа кроликов получила название персисторов, вторая — регрессоров. Оказалось, что лимфоциты обеих групп животных в равной мере активны против опухолевых клеток и подавляют их рост. Однако если в ту же чашку добавить, помимо лимфоцитов, кровяную сыворотку, то результаты будут разными. Сыворотка от животных–персисторов отменяет подавляющее действие лимфоцитов, сыворотка от животных–регрессоров его не отменяет.

    Авторы доказали, что сывороточный фактор, мешающий работать лимфоцитам, — противоопухолевые антитела. Хеллстремы назвали их блокирующими и сформулировали очень популярную гипотезу блокирующих антител.

    Согласно этой гипотезе выработка антител, зависящая от деятельности В–системы иммунитета, и клеточная форма иммунного ответа, связанная с деятельностью Т–лимфоцитов, находятся в своеобразных антагонистических взаимоотношениях. Иммунные лимфоциты распознают опухолевые клетки и уничтожают их. Антитела не способны оказать вредное влияние на опухолевые клетки, но, соединяясь с ними, загораживают, блокируют их от губительного действия иммунных лимфоцитов. Судьба опухоли и опухоленосителя зависит от соотношения выработки антител и накопления иммунных лимфоцитов. Перетянет первое — опухоль будет расти, перетянет второе — будет разрушена.

    Почему иммунный ответ при раке неэффективен.


    — Почему же все–таки иммунный ответ при раке неэффективен? Почему рак — это чуть ли не смертный приговор?

    — Этот вопрос одновременно и справедлив и несправедлив.


    — Почему же несправедлив?

    — Да потому, что все мы с вами живы–здоровы и не имеем опухолей благодаря каждодневной эффективной, именно эффективной работе иммунной системы, убирающей все изменившиеся клетки. Так что ее неэффективность — это не правило, а исключение.


    — Ну а почему неэффективен в случаях заболеваний, пусть даже это не правило, а исключения из него?

    Образование и рост опухоли (совокупности клеток, отличающихся в антигенном отношении от организма–носителя) представляют собой иммунологическую загадку. Главный вопрос этой загадки в том, что антигенно чужеродная ткань не отторгается. Ситуация, прямо противоположная той, которая имеет место при пересадке чужеродных тканей или органов. Ведь мы знаем, что минимального генетического отличия пересаживаемой кожи или почки достаточно, чтобы она была распознана как чужая и отторгнута или разрушена.

    Задача иммунологии при пересадке органов — отменить или подавить систему иммунологического надзора. Необходимо добиться ситуации, подобной существующей в организме опухоленосителя, когда антигенно чужеродная ткань не отторгается вследствие неполноценности иммунологического надзора.

    Задача иммунологии при раке обратная: восстановить или усилить систему иммунологического надзора. Вполне возможно, что обе эти задачи едины в своей основе и будут решены одновременно. Придет решение из области трансплантационной иммунологии или иммунологии рака, не столь существенно.


    Каковы же причины неполноценности иммунного ответа против растущей опухоли?

    Иммунитет против рака

    Если говорить честно, никто не знает. Существуют только предположения, более или менее правдоподобные гипотезы. Вот некоторые из них.

    Гипотеза иммунологической толерантности. Для опухолей, вирусная природа которых доказана, предполагается, что вирусные частицы постоянно находятся в клетках этого животного в скрытой, дремлющей форме. Следует подчеркнуть, что они находятся в самом «сердце» клеток, среди ее наследственно го материала, среди генов. Такие вирусные частицы делятся вместе с хромосомами при размножении клеток. Таким образом, они оказываются и в половых клетках; передаются по наследству возникающему зародышу нового организма.

    А так как чужеродные вещества, попадающие в организм во время эмбрионального развития, обеспечивают развитие толерантности, иммунологической неотвечаемости, то рождается организм, который не может реагировать на эти вирусы. И вот, если под влиянием каких–либо факторов эти вирусы активизируются, выходят из дремлющего состояния и начинают превращать нормальные клетки в раковые, иммунная система не замечает этого. Она толерантна.

    Гипотеза иммунодепрессивного влияния опухоли. Предполагается выделение раковыми клетками неизвестных веществ, подавляющих иммунный ответ. Это предположение не имеет серьезных экспериментальных подтверждений. Однако известно, что раковые антигены могут угнетать активность лимфоцитов, блокируя лимфоцитарные рецепторы, как бы ослепляя их. Окруженный антигенами лимфоцит не может найти раковую клетку.

    Очень популярна гипотеза дисбаланса между скоростью развития иммунного ответа и ростом опухоли. В соответствии с этой гипотезой рост опухолевой массы постоянно опережает интенсивность развития и размножения реагирующих на нее лимфоидных клеток. Происходит истощение той части лимфоцитов, которые могут реагировать на эту опухоль, и развивается иммунная беззащитность против нее.

    Еще одна гипотеза кладет в основу закономерности генетического контроля иммунного ответа. Суть ее в том, что у каждого организма есть свой набор генов иммунного ответа. Где–то в самом начале книги уже говорилось о них. Эти гены называются IR–генами от слов Immunal Response — иммунный ответ. Гены обозначаются цифрами IR–1, IR–2 и т. д.

    Никто еще точно не знает, сколько их. Но каждый из них заведует способностью реагировать на тот или иной конкретный антиген. Если у какого–то человека «сильный» ген IR–1, он прекрасно и эффективно реагирует на некий антиген X. Но если он у него в «слабой» форме, этот человек не сможет реагировать на антиген X. В то же самое время ген IR–2 может быть у этого человека «сильным», и он, несмотря на свою слабость в отношении антигена X, великолепно справится с антигеном Y.

    Генов много, большинство из них «сильные», и каждый из нас не боится микробов, несущих несколько антигенов. Допустим, микроб несет антигены X, Y, Z. А взятый для примера человек по причине «слабости» гена IR–1 не может реагировать против антигена X. Его лимфоциты распознают чужеродного пришельца и убьют его за счет реакции на антигены Y и Z.

    Ну а если представить себе чуждую клетку, у которой всего один чужеродный антиген? Что будет с нашим героем? Его иммунная система не заметит чужака и не помешает ему жить и размножаться.

    Мы с вами живем благополучно. Набор IR–генов работает исправно. Но у каждого из нас есть несколько генов, относящихся к категории «слабых». Это такой пустяк, что никто его не замечает. В организм проникают микробы и вирусы, они уничтожаются. Среди клеток тела возникают мутации. Изменившиеся клетки тоже уничтожаются. До тех пор, пока не появится такая мутация, вследствие которой возникает антиген, невидимый для иммунной системы конкретного индивидуума. Невидимый потому, что его IR–ген, обеспечивающий реакцию на этот (и только на этот) антиген, относится к категории «слабых». Тогда возникшая раковая клетка не уничтожается, размножается и дает опухоль.

    Вот почему у одного человека раковые антигены одни, у другого другие, у третьего третьи. Вот почему перед иммунологией стоит огромной важности задача научиться превращать генетически слабореагирующую особь в сильнореагирующую.

    Что делают для стимуляции противоракового иммунитета.


    — Наверное, это еще не умеют?

    — Да, в отношении раковых антигенов не умеют.


    — А что же делают, чтобы стимулировать противораковый иммунитет?

    Когда произносишь слово «история», возникают представления о веках или по крайней мере десятилетиях. Например, история борьбы с оспой. Вспоминаются древние китайские медики, которые растирают в ступке струпья с язв больных для вдувания порошка в нос здоровым людям. Потом Эдуард Дженнер, который 200 лет назад приготовил вакцину для людей, использовав коровью оспу. Декреты 1918 года об обязательной вакцинации всего населения страны. История завершилась победой. История большая. Оспы нет.

    Иммунотерапия рака делает сейчас свои первые шаги. Пока еще больше надежд, чем реальных успехов. Но надежды большие.

    Вакцинация

    Самый первый логический шаг опирается на доказательство того факта, что противоопухолевую защиту обеспечивают Т–лимфоциты. Следовательно, для лечения необходимо стимулировать Т–систему иммунитета.

      1   2   3   4


    написать администратору сайта