Физика пласта для ЗГД. Нефть стала известна людям более четырёх тысяч лет тому назад
Скачать 459.17 Kb.
|
Диэлектрические свойства нефтей. Нефть – диэлектрик. Диэлектрическая проницаемость (ε) показывает, во сколько раз взаимодействие между электрическими зарядами в данном веществе меньше, чем в вакууме, при прочих равных условиях. Теоретически считается что если у вещества ε < 2,5, то вещество считается диэлектрик. Величины диэлектрической проницаемости измененяются в следующих диапазонах: для воздуха → 1 – 1,0006; для нефти → 1,86 – 2,38; для нефтяного газа → 1,001 – 1,015; для смол и асфальтенов → 2,7 – 2,8; для воды → 80 – 80,1. С увеличением минерализации диэлектрическая проницаемость будет падать. Например, для растворов NaCl в воде при концентрации NaCl равной 5,6% диэлектрическая проницаемость воды равна – 69,1, а при концентрации NaCl равной 10,7% диэлектрическая проницаемость уменьшится до 59. 2.2.2. РАЗЛИЧИЕ СВОЙСТВ НЕФТИ В ПРЕДЕЛАХ НЕФТЕГАЗОНОСНОЙ ЗАЛЕЖИ Физические свойства и состав нефти в пределах одного и того же пласта не всегда остаются постоянными. Изменение свойств нефти зависит, в основном, от глубины залегания пласта. В залежах, не имеющих выхода на поверхность и окруженных краевыми водами, плотность нефти и количество смол увеличиваются с глубиной залегания. Плотность нефти увеличивается от свода к крыльям залежи. В сводовой части залежи всегда больше газа. Ближе к зонам водонефтяного контакта происходят окислительные процессы, что увеличивает плотность нефти в приконтурных зонах. Вязкость нефти увеличивается от купола свода к крыльям. Давление насыщения нефти газом и количество растворенного газа в единице объема нефти уменьшается по направлению к водонефтяному контакту, а, следовательно, и объемный коэффициент нефти уменьшается к крыльям складки. Состав газа в куполе складки имеет больше азота, метана, этана, пропана приблизительно на 2%, чем в крыльях. Бутановых углеводородов больше находится в крыльях. Каждая залежь имеет свой комплекс причин изменения свойств нефти по пласту. Одним из методов исследования изменения свойств нефти по залежи является фотоколориметрия. В основе метода лежит способность раствора поглощать световой поток. Степень поглощения светового потока (колориметрические свойства нефти) зависят от содержания асфальто-смолистых веществ. Вместе с изменением содержания последних в нефти изменяются ее вязкость, плотность и другие свойства. Поэтому по изменению колориметрических свойств нефти можно судить и об изменении других ее параметров. Зная начальное распределение свойств нефти по залежи и динамику изменения состава и свойств нефти, добываемых из скважин, можно, например, судить о направлениях движения нефти в пласте, устанавливать взаимосвязи нефтяных и нагнетательных скважин, оценивать продуктивность отдельных пропластков. 2.3. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПЛАСТОВОЙ ВОДЫ По мере эксплуатации нефтяных месторождений скважины постепенно обводняются. Содержание пластовой воды в скважинной продукции растёт и может достигать 95 - 98%. Поэтому важно знать, какое влияние оказывает пластовая вода на процесс добычи нефти и газа. Состав пластовых вод разнообразен и зависит от природы эксплуатируемого нефтяного пласта, физико-химических свойств нефти и газа. Различают следующие виды пластовых вод:
Все эти виды вод представляют собой единую гидродинамическую систему. Пластовая вода часто является агентом, вытесняющим нефть из пласта. Следовательно, её свойства влияют на количество вытесненной нефти. 2.3.1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПЛАСТОВЫХ ВОД Минерализация воды характеризует содержание в ней растворённых солей в г/л. В пластовых водах всегда растворено некоторое количество солей. По степени минерализации пластовые воды делятся на четыре типа:
Минерализация пластовой воды растёт с глубиной залегания пластов. В пластовой воде содержатся ионы растворённых солей:
Больше всего в воде содержится хлористых солей, до 80-90% от общего содержания солей. В количественном отношении катионы солей пластовых вод располагаются в следующий ряд: Na+; Ca2+; Mg2+; K+; Fe3+. Большое значение на растворимость солей и увеличение их концентрации в пластовых водах оказывает температура и парциальное давление СО2. Максимальная растворимость СаСО3 в воде наблюдается при 0оС, с возрастанием температуры она падает. Максимальная растворимость гипса (СаSО4·2Н2О) в воде наблюдается при 40оС. С дальнейшим возрастанием температуры она уменьшается. С увеличением парциальное давление СО2 растворимость СаСО3 возрастает. Уменьшение пластового давления усиливает процесс выпадения солей СаСО3 и др. Изменение термобарической обстановки в пласте даже при небольшой минерализации пластовых вод влияет на растворимость солей и выпадение их. По типу растворённых в воде солей различают хлоркальциевые (хлоркальциево-магниевые) и гидрокарбонатные (гидрокарбонатно-натриевые, щелочные) пластовые воды. Тип пластовой воды определяется анионом. Гидрокарбонатный тип воды определяется солями угольной кислоты, необходимо наличие карбонат - CO32–, или бикарбонат - HCO3– аниона. Соли всех остальных кислот относятся к хлоркальциевому типу. В основном, это соли соляной кислоты – хлориды (Cl–). Соли пластовых вод влияют и определяет её жёсткость. Жёсткостью называется суммарное содержание растворённых солей двухвалентных катионов: кальция, магния и железа. Жёсткость различают временную (карбонатную) и постоянную (некарбонатную). Временная жёсткость или карбонатная (Жк) обусловлена содержанием в воде карбонатов или гидрокарбонатов двухвалентных металлов: кальция, магния, железа. Постоянная жёсткость или некарбонатная (Жнк) обусловлена наличием в воде сульфатов или хлоридов (или соли других кислот) двухвалентных металлов: кальция, магния, железа. Общая жёсткость воды определяется как сумма карбонатной и некарбонатной: Жо = Жк + Жнк (2.39) Жёсткость воды оценивается содержанием в ней солей в миллиграмм эквивалентах на литр . Жк , Жнк оценивают как сумму жесткостей всех i-ых ионов (∑gi): Жо = Sgi (2.40) Жесткость иона оценивается отношением массы иона к его эквиваленту: , (2.41) где mvi – концентрация i-го иона в воде (мг/л); эi – эквивалент i-го иона. Эквивалент иона оценивается отношением молекулярной массы иона (МI) к его валентности (n): , (2.42) где Мi – молекулярная масса иона; n – валентность иона. Природные воды в зависимости от содержания в них двухвалентных катионов кальция, магния, железа подразделяются на следующие типы:
Жесткость пластовой воды и ее тип по жесткости определяется экспериментально-расчетным путем (см. разд. "Практикум для самостоятельной работы"). Временную (карбонатную) жёсткость можно устранить термическим методом, длительным кипячением или химическим методом – добавлением гидроксида кальция Са(ОН)2. В обоих случаях выпадает в осадок карбонат кальция СаСО3. Постоянную жёсткость устраняют химическим способом с помощью добавления соды или щёлочи. Содержание водородных ионов в воде определяется показателем концентрации водородных ионов (рН), который равен отрицательному логарифму концентрации ионов водорода: , (2.43) где Сн+ – концентрация ионов водорода. Показатель рН характеризует активную часть ионов водорода, которая образовалась в результате диссоциации молекул воды. В зависимости от рН воды подразделяются на:
Поскольку константа диссоциации воды зависит от температуры и давления, то эти параметры влияют на величину рН (см. раздел "Практикум для самостоятельной работы"). С возрастанием температуры рН уменьшается и это обстоятельство необходимо учитывать при закачке воды в пласт. Плотность пластовых вод сильно зависит от минерализации, т.е. содержания растворённых солей. В среднем плотность пластовой воды изменяется в диапазоне: 1010-1210 кг/м3, однако встречается и исключение - 1450 кг/м3. Пластовые воды месторождений нефтей и газоконденсатов Томской области имеют небольшую плотность: для мезозойских месторождений → 1007 – 1014 кг/м3; для палеозойских → 1040 – 1048 кг/м3; сеноманские воды → 1010 – 1012 кг/м3; Вязкость воды в пластовых условиях зависит, в основном, от температуры и минерализации. С возрастанием минерализации вязкость возрастает. Наибольшую вязкость имеют хлоркальциевые воды по сравнению с гидрокарбонатными и они приблизительно в 1,5-2 раза больше вязкости чистой воды. С возрастанием температуры вязкость уменьшается. От давления вязкость зависит двояко: в области низких температур (0-40оС) с возрастанием давления вязкость уменьшается, а в области высоких температур (выше 40оС) возрастает. Тепловое расширение воды характеризуется коэффициентом теплового расширения: . (2.44) Из формулы следует, что коэффициент теплового расширения воды (Е) характеризует изменение единицы объёма воды при изменении её температуры на 1°С. По экспериментальным данным в пластовых условиях он колеблется в пределах (18-90)×10-5 1/°С. С увеличением температуры коэффициент теплового расширения возрастает, с ростом пластового давления – уменьшается. Коэффициент сжимаемости воды характеризует изменение единицы объёма воды при изменении давления на единицу: . (2.45) Коэффициент сжимаемости воды изменяется для пластовых условий от 3,7×10-10 до 5,0×10-10 Па-1. При наличии растворённого газа он увеличивается, и приближённо может оцениваться по формуле: bвг = bв (1+0,05×S), (2.46) где S – количество газа, растворённого в воде, м3/м3. Объёмный коэффициент пластовой воды характеризует отношение удельного объёма воды в пластовых условиях к удельному объёму воды в стандартных условиях: . (2.47) Увеличение пластового давления способствует уменьшению объёмного коэффициента, а рост температуры – увеличению. Объёмный коэффициент изменяется в пределах 0,99-1,06. Соли пластовых вод – электролиты. Электролитом называются химические соединения, которые при взаимодействии с растворителем полностью или частично диссоциируют на ионы. Электрические свойства имеют ионную природу, и пластовая вода проявляет электрические свойства. Электропроводность пластовых вод имеет широкое применение. Удельная электропроводность (χ) характеризует количество электричества, которое протекает в 1 секунду через 1 см2 поперечного сечения раствора электролита (S) при градиенте электрического поля в 1 в (R) на 1 см длины (L). Удельная электропроводность обратно пропорционально связана с удельным сопротивлением раствора ρ: χ = L / (RS), χ =1/ρ. (2.48) Удельная электропроводность имеет размерность в системе СИ [ом· м]-1, в системе СГС [ом·см]-1. С увеличением минерализации и полярности удельная электропроводность растет. Удельная электропроводность изменяется в диапазонах: у речной воды = 10-1 – 10-2; пластовой воды = 10-1 – 1; морской воды = 3 – 4; воды с 5% содержанием NaCl = 6,6; воды с 20% содержанием NaCl = 20; нефтей = 0,5 · 10-7 – 0,5 · 10-6; газоконденсатов = 10-10 – 10-16 [ом· м]-1 . Вода, находясь в контакте с нефтью, частично в ней растворяется. Коэффициент растворимости нефти в воде зависит от наличия в воде полярных составляющих. Чем легче нефть, тем меньше в ней растворено воды. Нефти парафинового основания содержат мало воды. С ростом в нефти содержания ароматических углеводородов и гетероатомных соединений, растворимость воды в нефти растёт. За счёт растворения воды в нефти происходят изменения в зоне водонефтяного контакта. Чёткой границы вода-нефть не существует ("зеркало" не образуется). За счёт растворения воды в нефти и диспергирования их друг в друга образуется так называемая "переходная зона", высота которой зависит от величины полярности нефти. 3. ФАЗОВЫЕ СОСТОЯНИЯ УГЛЕВОДОРОДНЫХ СИСТЕМ В процессе разработки месторождений в пластах непрерывно изменяются давление, температура. Это сопровождается непрерывным изменением состава газовой и жидкой фаз и переходом различных углеводородов из одной фазы в другую. Особенно быстро такие превращения происходят при движении нефти по стволу скважины от забоя к устью. Дальнейшее движение нефти и газа к потребителю также сопровождается непрерывными фазовыми превращениями. Закономерности фазовых переходов и фазовое состояние газонефтяных смесей при различных условиях необходимо знать для решения многих задач. Интенсивность выделения газовой фазы из нефти зависит от многих факторов, основными из которых являются:
3.1. СХЕМА ФАЗОВЫХ ПРЕВРАЩЕНИЙ ОДНОКОМПОНЕНТНЫХ СИСТЕМ Углеводородные газы, подобно всем индивидуальным веществам, изменяют свой объём при изменении давления и температуры. На рис. 3.1 представлена диаграмма фазового состояния для чистого этана. Каждая из кривых соответствует фазовым изменениям при постоянной температуре и имеет три участка. Слева от пунктирной линии отрезок соответствует газовой фазе, горизонтальный участок – двухфазной газожидкостной области, левый участок – жидкой фазе. Отрезок пунктирной линии вправо от максимума в точке С называется кривой точек конденсации (или точек росы), а влево от максимума – кривой точек парообразования (кипения). В точке С пунктирной линии кривые парообразования и конденсации сливаются. Эта точка называется критической. С приближением температуры и давления к критическим значениям свойства газовой и жидкой фаз становятся одинаковыми, поверхность раздела между ними исчезает, и плотности их уравниваются. Следовательно, с приближением к критической точке по кривой начала кипения плотность жидкой фазы будет непрерывно убывать. Если же к ней приближаться по линии точек конденсации, то плотность пара будет непрерывно возрастать. Рис. 3.1. Диаграмма фазового состояния чистого этана. Для индивидуальных углеводородов граничным давлением между жидкой и газовой фазой является давление упругости паров (при данной температуре), при котором происходит конденсация или испарение. Обе фазы (жидкость и пар) при данной температуре присутствуют в системе только в том случае, если давление равно упругости насыщенного пара над жидкостью. Давление при котором газ начинает конденсироваться называется давлением насыщения для газа. Фазовые превращения углеводородов можно также представить в координатах давление-температура (рис. 3.2). Для однокомпонентной системы кривая давления насыщенного пара на графике давление-температура является одновременно кривой точек начала кипения и линией точек росы. При всех других давлениях и температурах вещество находится в однофазном состоянии. Фазовая диаграмма индивидуальных углеводородов ограничивается критической точкой С (рис. 3.2). Для однокомпонентных систем эта точка определяется наивысшими значениями давления и температуры, при которых ещё могут существовать две фазы одновременно. Рис. 3.2. Диаграмма фазового состояния чистого этана в координатах Т-Р. Из рисунка 3.2 следует, что путём соответствующих изменений давления и температуры углеводороды можно перевести из парообразного состояния в жидкое, минуя двухфазную область. Газ, характеризующийся параметрами точки А (рис. 3.2), можно изобарически нагреть до температуры точки В, а затем, повысив давление в системе при постоянной температуре, перевести вещество в область точки D, расположенную выше критической точки С, и далее в область точки Е. Свойства системы при этом изменяются непрерывно, и разделения углеводорода на фазы не произойдёт. При дальнейшем охлаждении системы (от точки D до точки Е), а затем при снижении давления до точки F вещество приобретёт свойства жидкости, минуя область двухфазного состояния. Значительно сложнее закономерности фазовых переходов двух- и многокомпонентных систем. В смеси углеводородов каждый компонент имеет собственные значения упругости насыщенных паров, поэтому процессы конденсации и испарения не будут проходить при конкретных значениях давления и температуры, а в определённом диапазоне значений давления и температуры. Границы диапазона будут тем больше, чем больше разница между критическими значениями давления и температуры индивидуальных компонентов, входящих в систему. Для многокомпонентных систем, в силу их неидеальности, возможны существование двух фаз при температурах или давлениях выше критических величин. Явления существования двух фаз при изотермическом или изобарическом расширении (сжатии) смеси в области выше критических температур и давлений называются ретроградными явлениями или процессами обратного испарения и конденсации. Изотермические ретроградные явления происходят только при температурах выше критической и ниже максимальной двухфазной температуры. Изобарические процессы испарения и конденсации наблюдаются между критическим и максимальным двухфазным давлением. Такие явления характерны, в основном, для газоконденсатных месторождений, имеющих высокие пластовые температуры и давления. Степень насыщения газоконденсатной залежи высококипящими углеводородами (конденсатом) определяется величиной газоконденсатного фактора. По аналогии с газовым фактором (Го) для нефтяных месторождений (см. разд. 2.1.) понятие газоконденсатный фактор (Ко) применяется для конденсатных залежей и представляет собой отношение количества (дебита) газа в м3 к количеству стабильного конденсата в м3. Величина, обратная газоконденсатному фактору, называется выход конденсата. Нефть и конденсат, полученные непосредственно на промысле при данных температурах и давлениях, называются сырыми. Нефть и конденсат прошедшие процессы дегазации (сепарации), стабилизации при стандартных условиях называются стабильными. 10>50> |