Главная страница
Навигация по странице:

  • 4.1. Тенденции в обосновании технологического режима эксплуатации газовых и газоконденсатных скважин [10]

  • 4.2. Основные принципы установления оптимального технологического режима эксплуатации скважин[10]

  • Принципы выбора оптимального режима.

  • Для установления наиболее обоснованного технологического режима работы скважин необходимо учесть

  • 4.3. Изменение технологического режима эксплуатации скважин в процессе разработки

  • . Определяющий фактор при установлении технологического режима - подошвенная вода.

  • Определяющий фактор при установлении технологического режима - близость контурных вод.

  • Основной фактор при установлении технологического режима - устойчивость породы к разрушению.

  • Основными факторами при установлении технологического режима являются вскрытие пласта и гидродинамическое несовершенство по степени и характеру вскрытия.

  • Основной фактор при установлении технологического режима - наличие в составе газа коррозионно-активных компонентов.

  • Изменение технологического режима эксплуатации скважины связано с многопластовостью.

  • Технологический режим устанавливался исходя из влияния температуры на производительность скважин.

  • Изменение технологического режима работы скважины обусловлено накоплением и выносом столба жидкости или песчаной пробки на забое скважины

  • Изменение технологического режима эксплуатации обусловлено необходимостью поддержания определенной величины устьевого давления или его изменением.

  • 4.4. Принципы и математические критерии основных определяющих факторов

  • 4.4.1. Влияние несовершенства газовых скважин на технологический режим эксплуатации[10]

  • 4.4.1.1. Влияние степени вскрытия на производительность газовых скважин. Однопластовая звлежь.

  • Оптимальная величина вскрытия.

  • Разработка газовых и газоконденсатных месторождений. Некоммерческий фонд имени профессора А. В. Аксарина


    Скачать 2.61 Mb.
    НазваниеНекоммерческий фонд имени профессора А. В. Аксарина
    Дата28.01.2020
    Размер2.61 Mb.
    Формат файлаdoc
    Имя файлаРазработка газовых и газоконденсатных месторождений.doc
    ТипДокументы
    #106122
    страница47 из 65
    1   ...   43   44   45   46   47   48   49   50   ...   65

    4. УСТАНОВЛЕНИЕ ОПТИМАЛЬНОГО ТЕХНОЛОГИЧЕСКОГО РЕЖИМА ЭКСПЛУАТАЦИИ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН


    Различаются два вида технологического режима: фактический и расчетный.

    Фактический технологический режим работы скважины устанавливается геологической службой промысла ежеквартально или один раз в полгода в соответствии с данными проекта разработки, опыта эксплуатации и результатами исследования скважин.

    Расчетный технологический режим устанавливается при составлении проектов разработки газовых месторождений на много лет вперед.
    4.1. Тенденции в обосновании технологического режима эксплуатации газовых и газоконденсатных скважин [10]
    В настоящее время существуют три тенденции в обосновании технологического режима эксплуатации газовых и газоконденсатных скважин:

    1. Независимо от геологических особенностей месторождений режим работы скважины должен соответствовать 10-25% абсолютно свободного дебита скважины, т.е. дебиту, соответствующему забойному давлению 1 атм.

    2. Независимо от геологических особенностей месторождения скважина должна эксплуатироваться при дебитах, обеспечивающих линейный закон фильтрации газа в призабойной зоне, с целью экономии энергии газа в процессе разработки ("энергосберегающий" дебит).

    3. Режим эксплуатации каждой скважины должен обосновываться с учетом возможности деформации, разрушения призабойной зоны, образования несчано-жидкостной пробки на забое, конуса подошвенной воды (нефти при наличии оторочки), гидратов, коррозии оборудования, выпадения и частичного выноса конденсата из призабойной зоны, многослойности и неоднородности по устойчивости, емкостным и фильтрационным параметрам залежи, конструкции скважинного оборудования, обводнения, отложения солей, обвязки скважин и др.

    Первый и второй подходы обоснования режима работы газовых скважин приняты в США. Однако в США практически нет месторождений, подобных по параметрам сеноманской залежи, из которой добывается 75% ежегодного отбора газа в Российской Федерации, при депрессии на пласт 0,3-5,0 атм и дебите 0,5-4,0 млн м3/сут. Месторождения сеноманской залежи характеризуются неустойчивостью пластов к разрушению практически при любых депрессиях на пласт и относятся к неоднородному массивно-пластовому типу месторождений с подошвенной водой, расположенных в зоне с многолетнемерзлыми слоями. Поэтому без детального учета каждого из этих и других факторов использование "принципа" обоснования режима, принятого в США, для месторождений сеноманской залежи по- видимому нецелесообразно и наиболее приемлимым вариантом является третий принцип..

    Среди различных факторов, влияющих на режим работы газовых скважин, наиболее трудными считаются научное обоснование и точный прогноз безводного дебита газовых скважин, вскрывших неоднородные терригенные и трещинно-пористые пласты с подошвенной водой, а также дебита скважин, вскрывших неустойчивые и слабоустойчивые пласты, с обоснованным количеством песка в продукции скважины.

    4.2. Основные принципы установления оптимального технологического режима эксплуатации скважин[10]
    Под технологическим режимом эксплуатации понимается режим, при котором поддерживается определённое соотношение между дебитом скважины и забойным давлением или его градиентом. С математической точки зрения технологический режим эксплуатации скважин определяют граничные условия на забое, знать которые необходимо для интегрирования дифференциального уравнения фильтрации газа к скважине.

    Принципы выбора оптимального режима. При установлении технологического режима эксплуатации используют исходные данные, накопленные в процессе поиска залежи, разведки и опытной эксплуатации месторождения. Эти данные являются результатами геологических, геофизических, газогидродинамических, газоконденсатных исследований и лабораторного изучения образцов коллекторов и насыщающих их жидкостей и газов. Количество и качество этих исследований не всегда соответствуют нормам и положениям, соблюдение которых но правилам разработки является обязательным. Указанные несоответствия в большинстве случаев закономерны и связаны со спецификой газовых месторождений. В частности, как правило, газовые залежи неоднородны но площади и по разрезу, их емкостные и фильтрационные параметры, запасы определяются неточно, в начальный период разработки отсутствует достаточное число скважин для получения достоверной информации.

    На технологический режим эксплуатации влияет множество факторов, причем влияние различных факторов может быть как однонаправленным, так и разнонаправленным. Поэтому при недостаточно глубоком изучении этих вопросов установленный режим может оказатся неправильным.

    Для установления наиболее обоснованного технологического режима работы скважин необходимо учесть:

    • географические и метеорологические условия района расположения месторождения, наличие слоя многолетней мерзлоты, форму, тип, размер и режим залежи; емкостные и фильтрационные параметры пластов, глубину и последовательность их залегания, наличие гидродинамической связи между пропластками; запасы газа, конденсата и нефти (при наличии нефтяной оторочки), наличие и активность подошвенной и красных вод;

    • условия вскрытия пласта в процессе бурения, свойства промывочной жидкости, степень загрязнения призабойной зоны промывочной жидкостью; устойчивость пласта к разрушению, влияние изменения давления на параметры пласта, водогазонефтенасыщенность пластов, их давления и температуры; совершенство скважин но степени и характеру вскрытия пласта;

    • состав газа, конденсата, нефти (при наличии оторочки) и воды, наличие в составе газа коррозионно-активных компонентов – H2S, СО2, ртути и др.; наличие отдельных пропластков и характер их изменения по толщине и по площади, наличие органических кислот в пластовой воде; влагосодержание газа, физико-химические свойства газа, конденсата, воды и нефти и их изменение по площади и по разрезу;

    • конструкцию скважин, оборудование забоя и устья скважины; схему сбора, очистки и осушки газа на промысле и условия очистки, осушки и транспортировки газа; характеристики применяемого скважинного и промыслового оборудования;

    • условия потребления газа по темпу отбора, неравномерность потребления, теплотворную способность газа.

    Нередко влияние одного фактора противоречит другому, что не позволяет учесть всю совокупность факторов. Поэтому для установления технологического режима эксплуатации газовых скважин с учетом "всех" факторов должны быть обоснованы и рекомендованы соответствующие принципы и математические критерии. Такие принципы и критерии могут быть реализованы путем обобщения по группам различных факторов. Причем, используя накопленный опыт установления технологического режима эксплуатации газовых скважин, заблаговременно можно исключить часть факторов, связанных с условиями вскрытия, свойствами промывочной жидкости, совершенством скважины, образованием пробок, техникой и технологией сбора, осушки и очистки газа и др. Тогда к основным факторам, влияющим на технологический режим эксплуатации газовых и газоконденсатных скважин, можно отнести следующие:

    • деформацию и устойчивость к разрушению продуктивного разреза;

    • наличие активной подошвенной или контурной воды, способной по сверхпроницаемым пропласткам сравнительно быстро обводнить скважины, вскрывшие газоносную толщину, включая сверхпроницаемый пропласток;

    • условия вскрытия пласта, степень и характер вскрытия с учетом близости контактов газ—нефть или газ-вода;

    • возможность образования жидкостных или песчано-жидкостных пробок в процессе эксплуатации;

    • наличие коррозионно-активных компонентов в составе добываемого газа и пластовой воды, концентрацию этих компонентов, давление, температуру и скорость потока по стволу скважины;

    • многопластовость, различие составов газов, давлений и температур отдельных пропластков, наличие или отсутствие гидродинамической связи между ними и последовательность их залегания, одинаковость уровня газоводяных контактов, неоднородность разреза по прочностным и фильтрационным признакам.

    По мере истощения залежи, продвижения подошвенной и контурной воды, снижения дебита газа во времени, уменьшения пластового и забойного давлений наступает время, когда установленный режим не обеспечивается, и тогда необходимо изменить выбранный технологический режим эксплуатации. Вновь устанавливаемый технологический режим эксплуатации также обосновывается, как и в начале разработки месторождения.

    Независимо от разработки при установлении оптимальных технологических режимов эксплуатации необходимо придерживаться следующих принципов:

    • полностью учитывать геолого-промысловую характеристику залежи; полностью учитывать технологическую и техническую характеристики скважинного и наземного оборудования;

    • рационально использовать естественную энергию газоносного, нефтеносного (при наличии нефтяной оторочки) пластов и водонапорной системы;

    • полностью удовлетворять требования закона об охране окружающей среды и рациональном использовании природных ресурсов;

    • максимально гарантировать надежность работы в установленные сроки всего комплекса систем пласт-начало газопровода;

    • обеспечивать наибольшую производительность газовых скважин в предусмотренный планом период разработки залежи;

    • максимально учитывать возможность снятия ограничений, снижающих дебиты скважин, и предусматривать меры по интенсификации добычи газа:

    • своевременно изменять ранее установленные, но непригодные на данном этапе разработки технологические режимы эксплуатации скважин на новые режимы;

    • обеспечивать предусмотренную планом добычу газа при минимальных капитальных вложениях и эксплуатационных затратах.

    При полном и безусловном соблюдении перечисленных выше принципов установления технологического режима эксплуатации будет достигнута рациональная разработка газовых и газоконденсатных месторождений.


    4.3. Изменение технологического режима эксплуатации скважин

    в процессе разработки
    Технологический режим эксплуатации газовых и газоконденсатных скважин с учетом определяющего фактора или сочетания факторов терпит изменения в процессе разработки месторождений. Изменения технологического режима обусловлены либо изменением самого определяющего фактора, по которому устанавливался данный режим, либо возникновением новых факторов, которые на данном этапе разработки из так называемых пассивных факторов переходят в активные. Необходимость изменения установленного технологического режима обусловлена изменением характеристик пласта и скважин в процессе разработки, проведением определенных мероприятий, позволяющих увеличить производительность скважин, или ремонтно-профилактических работ, нередко приводящих к снижению производительности.

    В процессе эксплуатации месторождения необходимость изменения технологического режима возникает при следующих обстоятельствах:

    I. Определяющий фактор при установлении технологического режима - подошвенная вода. В этом случае допустимая предельная депрессия на пласт для заданной величины вскрытия пласта - величина переменная. С изменением плотностей воды и газа, а также пластового давления величина допустимой депрессии линейно уменьшается с уменьшением пластового давления. Следовательно, при наличии подошвенной воды величина допустимой депрессии должна быть периодически снижена в соответствии со снижением пластового давления. Иначе установленная в начале разработки величина допустимой депрессии на пласт приводит к неизбежному подтягиванию конуса воды в скважину. Если технологический режим определяется на длительное время только по подошвенной воде, то при этом необходимо учесть подъем поверхности контакта газ-вода. Это, в свою очередь, приведет к более интенсивному снижению производительности скважины. Существует несколько часто встречающихся случаев необходимости изменения технологического режима, установленного по подошвенной воде:

    а) в скважине в результате ремонтно-изоляционных работ установлены цеметные мосты, которые позволяют увеличить величину допустимой депрессии на пласт, следовательно, увеличить предельный безводный дебит скважины, или создана искусственная перегородка, позволяющая также существенно повысить производительность скважины или депрессию на пласт;

    б) производительность скважины вследствие плохих коллекторских свойств пласта весьма низкая и допускается превышение допустимой величины депрессии с одновременным притоком газа и воды и последующим удалением воды из скважины;

    в) по некоторым скважинам, технологические режимы которых установлены исходя из наличия подошвенной воды, требуется повышение или понижение давления на устье скважины на фоне всех эксплуатируемых скважин и системы сбора газа;

    г) в скважине производятся работы по подъему и спуску насосно-компрессорных труб либо смена полностью или частично арматуры и эти работы приводят к изменению параметров пласта и скважины, следовательно, и к изменению технологического режима работы.

    Все изменения технологического режима эксплуатации независимо от того, вызваны ли они изменением пластового давления, подъемом поверхности газ-вода, изменением плотности воды и газа, установкой цементных мостов или созданием искусственного непроницаемого экрана, величиной устьевого давления, подъемом насосно-компрессорных труб или другими причинами, должны быть предусмотрены проектом разработки месторождения, обоснованы расчетным путем с учетом расстояния от нижнего интервала перфорации до контакта газ-вода, параметров пласта, возможного темпа подъема поверхности газ-вода и падения пластового давления, необходимой величины высоты цементного моста и непроницаемого экрана и других параметров, используемых при расчете величины предельного безводного дебита с привлечением фактического материала и контролируемых в процессе эксплуатации. Только при этих условиях проектные данные будут весьма близки к фактическим.

    II. Определяющий фактор при установлении технологического режима - близость контурных вод. В этом случае критерием выбора режима могут служить несколько параметров, среди которых на первое место выходит суммарный отбор газа из месторождения до прорыва воды в скважину. Принципиально продвижение контурных вод к скважине связано с двумя показателями: общим истощением месторождения независимо от расположения скважин, в частности рассматриваемой скважины, в результате которого происходит внедрение в газовую залежь контурной воды; созданием значительной депрессионной воронки, влияющей на темп внедрения воды в зону дренажа рассматриваемой скважины так, что он значительно опережает темп внедрения от общего истощения газоносного пласта. При сравнительно высоких темпах отбора газа из месторождения, что особенно характерно для месторождений с малыми запасами, как правило, темп внедрения контурных вод несколько отстает от темпа отбора газа. Следовательно, для сравнительно однородного пласта (или нескольких пластов) в скважинах, расположенных в зонах, не представляющих опасности прорыва контурных вод, обеспечение максимального дебита (если другие факторы не ограничивают его величину) при установлении технологического режима целесообразно. В то же время в скважинах, расположенных близко к контурной воде, ограничение депрессии с целью предотвращения преждевременного прорыва воды является необходимым условием. Величина депрессии в приконтурных скважинах в каждом конкретном месторождении и в каждой конкретной скважине выбирается расчетным путем исходя из расстояния от устья скважины до контакта газ-вода, коллекторских свойств пласта, их изменения от скважины до контура, пластового давления и других геолого-промысловых параметров. При наличии нескольких неоднородных пластов эти расчеты производятся по наиболее опасному с точки зрения быстрого прорыва контурной воды пласту.

    Возможные изменения технологического режима эксплуатации скважин, когда определяющим фактором является возможность прорыва контурной воды, связаны с ее продвижением в процессе истощения, необходимостью ремонтно-профилактических работ на скважине, изменением устьевого давления, образованием гидратов при незначительных дебитах и др.

    III. Основной фактор при установлении технологического режима - устойчивость породы к разрушению. При этом критерии технологического режима эксплуатации скважин устанавливаются в виде постоянного градиента, и его изменение в течение всего периода разработки не допускается. Иными словами, если скважина вскрывает коллектор с низкой устойчивостью пород к разрушению, то в процессе разработки требуется поддерживать его постоянным до тех пор, пока не будут проведены определенные мероприятия по предотвращению разрушения пласта. Величина допустимого градиента для газоносных пластов с низкой устойчивостью к разрушению устанавливается на скважинах рассматриваемого месторождения в период опытно-промышленной эксплуатации. При проверке правильности выбранной величины градиента не допускается использование данных, базирующихся на результатах кратковременного испытания скважин. Изменение технологического режима эксплуатации скважин, установленного исходя из разрушения пласта при превышении допустимой величины градиента, может происходить при укреплении призабойной зоны специальными смолами, внедрении одновременно-раздельной эксплуатации в случае многопластовости, применении механических или гравийных фильтров, проведении ремонтно-профилактических работ скважинного или устьевого оборудования и др.

    IV. Основными факторами при установлении технологического режима являются вскрытие пласта и гидродинамическое несовершенство по степени и характеру вскрытия. Если степень и характер вскрытия не обусловлены жестко при вскрытии пласта любыми промывочными растворами, то технологический режим устанавливается по мере дострела на перфорированной части фильтра и уплотнением перфорации до ее оптимальной величины.

    С целью повышения производительности скважин в ряде случаев допускается открытый необсаженный забой или спуск механических фильтров. Изменение технологического режима, связанное со вскрытием, необходимо также при системе эксплуатации сверху вниз или, наоборот, на многопластовых залежах.
    V. Основной фактор при установлении технологического режима - наличие в составе газа коррозионно-активных компонентов. Необходимость изменения технологического режима возникает начиная с момента, когда дальнейшее увеличение диаметра насосно-компрессорных труб невозможно. При этом скорость потока газа не должна превышать приближенно определенную величину в любом сечении ствола скважины. Если и процессе эксплуатации скважины даже в начальный период разработки производится закачка антикоррозионного ингибитора, то изменение технологического режима эксплуатации также становится необходимостью. Технологический режим эксплуатации скважины при определяющем факторе, связанном с коррозионно-активными компонентами в газе, также подлежит изменению (кроме случаев правильного выбора диаметра насосно-компрессорных труб до их максимально возможной величины и закачки ингибитора против коррозии), если необходимо поддержать определенное устьевое давление и увеличение количества влаги в газе приводит к более интенсивной коррозии оборудования.

    VI. Изменение технологического режима эксплуатации скважин обусловлено изменением коэффициентов фильтрационных сопротивлений, т.е. параметров пласта в призабойной зоне в результате очищения или загрязнения её в процессе разработки. Эти изменения определяются периодическими исследованиями, проводимыми на скважинах. Если в зависимости от свойств пласта и флюида периодичность и характер изменения их параметров в призабойной зоне носят закономерный характер, то при проектировании разработки должен быть рекомендован такой технологический режим, который в среднем обеспечивал бы для заданного числа скважин плановый отбор газа из месторождения. На практике часто изменение установленного технологического режимы происходит в скважинах, выносящих значительное количество жидких компонентов и твердых примесей при заданной конструкции скважины.

    VII. Изменение технологического режима эксплуатации скважины связано с многопластовостью. Эти изменения обусловлены степенью истощения отдельных пластов в процессе разработки, применением системы одновременно-раздельной эксплуатации скважин, изменением схемы сбора, очистки и осушки газа на промысле, необходимостью проведения изоляционных работ на одном из пластов и др.

    VIII. Технологический режим устанавливался исходя из влияния температуры на производительность скважин. В этом случае выбранный технологический режим, обеспечивающий безгидратный режим эксплуатации скважины, должен быть изменен, если:

    1) производится ингибирование продукции скважины в стволе, т.е. дополнительные потери давления в пласте и стволе скважины в результате подачи ингибитора исключают возможность образования гидратов;

    2) система осушки газа обеспечивает необходимую температуру сепарации независимо от температуры поступающего из скважины газа;

    3) в результате сравнительно длительной эксплуатации скважины (особенно в районах Крайнего Севера) произошло перераспределение температуры газа в среде, окружающей ствол скважины;

    4) производится спуск забойных нагревателей или теплоизоляционных лифтовых труб. позволяющих изменить технологический режим эксплуатации скважины, обусловленный определенной величиной распределения температуры в призабойной зоне пласта, стволе и на устье скважины.

    IX. Изменение технологического режима работы скважины обусловлено накоплением и выносом столба жидкости или песчаной пробки на забое скважины. В том случае, когда дальнейшие изменения в конструкции насосно-компрессорных труб исключены и поступающая из пласта конденсационная, пластовая вода или тяжелые компоненты углеводородов, переходящие в жидкое состояние в призабойной зоне и стволе скважин, полностью не выносятся, процесс накопления жидкостного столба требует изменения технологического режима путем закачки в ствол скважины ПАВ или соответствующих изменений производительности скважин. Аналогичное изменение должно быть произведено при накоплении песчано-жидкостной пробки на забое скважины, приводящей к изоляции части работающего интервала. Если образовалась жидкостная или песчаная пробка, то в процессе их удаления изменением глубины спуска и диаметра насосно-компрессорных труб или применением механических средств по удалению образовавшейся пробки установление нового технологического режима является необходимостью.

    X. Изменение технологического режима эксплуатации обусловлено необходимостью поддержания определенной величины устьевого давления или его изменением. Определяющая величина давления на устье скважин, на входе промыслового пункта осушки и очистки газа или промыслового газосборного коллектора устанавливается исходя из величины дебита скважины, параметров (длина, диаметр и др.) шлейфов, давления сепарации, давления на входе в компрессорную станцию и давления в начале газопровода. По известной заданной величине давления в одном из перечисленных узлов производятся расчеты для определения технологического режима эксплуатации скважин с учетом различных потерь давления от названного узла до пласта.

    Таким образом, технологический режим эксплуатации по некоторым определяющим факторам принципиально является переменной величиной, но несоблюдение установленного технологического режима и его изменения в процессе разработки со стороны работников промыслов приводят к преждевременному выходу скважин из строя и бурению дополнительных скважин.

    Наиболее часто при проектировании разработки газовых и газоконденсатных месторождений используются режимы постоянного градиента, постоянной депрессии или дебита, а также постоянного забойного давления. Причем, как правило, установленный в начальной стадии технологический режим, например постоянной депрессии или дебита, в период падающей добычи заменяется режимом постоянного устьевого давления по части скважин, устьевые давления которых отличаются от давления основного эксплуатационного фонда. В дальнейшем, с момента ввода компрессорной станции, эти скважины нередко переводятся снова на режим падающего устьевого давления. Увеличение за последние годы числа газовых и газоконденсатных месторождений, переходящих на последний этап разработки, но еще способных обеспечить выдачу значительного количества газа, происходит из-за отсутствия правильно установленного технологического режима эксплуатации скважин и конкретных рекомендаций по данному вопросу в проектах и анализах разработки месторождений. Существенное снижение пластового давления, производительности скважин, увеличение количества влаги в газе, низкая скорость потока газа в стволе скважины и другие факторы требуют предварительной оценки и выдачи конкретных рекомендаций по режиму эксплуатации скважин в поздней стадии разработки месторождений с учетом возможного применения плунжерных лифтов, применения ПАВ и т.д. для более надежной оценки добывной возможности каждой скважины или группы скважин и месторождения в целом.

    Время перехода от одного технологического режима к другому в основном зависит от фактора или сочетания факторов, по которым устанавливался данный технологический режим, от стадии разработки залежи и условий сбора и транспорта газа. Причем первая часть этого вопроса, т.е. выбор технологического режима в зависимости от того или иного фактора, являющегося определяющим для данного месторождения, решается проектирующими организациями на базе имеющихся геолого-промысловых данных. Время, требующее изменения режима в зависимости от стадии разработки, диктуется темпом освоения рассматриваемого месторождения, потребностью в газе по меньшей мере в данном районе, т.е. годовыми отборами, продолжительностью нарастающей, постоянной и падающей добычи. Кроме того, время изменения технологического режима связано с условиями сбора, т.е. с переводом от одной системы осушки к другой, и с начальными параметрами газопровода, сохранение которых ставится весьма жестко.

    В целом при возможности проведения прогнозных расчетов (в технологических схемах и проектах разработки) величин изменения пластового, забойного, устьевого давлений и давления системы сбора, осушки и транспортировки газа, содержания и изменения во времени количества жидкости в газе, технологии эксплуатации скважин с известной конструкцией и др. проектировщик обязан рекомендовать соответствующие сроки перехода от одного технологического режима работы на другой и определить критерии для выбора на каждой конкретной скважине правильного технологического режима работы. Без выполнения указанного требования правомерность и надежность проектных показателей на месторождениях могут приводить к существенным отклонениям проектных данных от фактической возможности промысла. Указанное выше положение касается временного, или так называемого стадийного (в зависимости от периода разработки залежи), необходимого изменения технологического режима эксплуатации. Если технологический режим установлен по какому-то из перечисленных факторов, то при проведении ряда мероприятий в скважине или неожиданных изменениях по различным причинам необходимо текущее, в отдельных скважинах очень частое, изменение технологического режима эксплуатации. Эта необходимость устанавливается при периодических исследованиях скважин или проведении разных мероприятий в скважинах и корректируется в материалах по анализу разработки.

    Из изложенного выше следует, что в процессе разработки происходят изменения технологического режима эксплуатации скважин. Эти изменения могут быть связаны как с самим фактором, по которому устанавливался данный режим, так и со стадией разработки и различными работами в скважине.

    Происходящие изменения могут быть учтены и прогнозированы в зависимости от различных факторов и должны быть включены в проект разработки месторождения.

    4.4. Принципы и математические критерии

    основных определяющих факторов

    при установлении технологического режима
    4.4.1. Влияние несовершенства газовых скважин на

    технологический режим эксплуатации[10]


    Газоотдающие возможности разрабатываемой залежи существенно зависят от характера связи ствола скважины с продуктивным пластом. От выбранных условий вскрытия продуктивного разреза зависит технологический режим эксплуатации. Влияние вскрытия пласта на производительность скважин связано с условиями вскрытия продуктивного пласта, обеспечивающими сохранение его естественной проницаемости; степенью вскрытия и конструкцией забоя скважины, через который осуществляется гидродинамическая связь ствола с скважиной.
    4.4.1.1. Влияние степени вскрытия на производительность

    газовых скважин.
    Однопластовая звлежь. Известно, что на дебит скважины определяющую роль играет проницаемость призабойной зоны (дебит уменьшается в двое при уменьшении проницаемости призабойной зоны по сравнению с проницаемостью пласта в 4 раза). Поэтому велика роль выбора промывочной жидкости и величины перепада давления на пласт при его вскрытии.

    Производительность скважин в значительной мере зависит от совершенства вскрытия пласта. Несовершенство скважин по степени и характеру вскрытия вызывает дополнительное сопротивление по пути движения жидкости и газа (рис.4.1), приводит к увеличению потерь давления и понижению производительности скважин (рис.4.2).



    Влияние степени вскрытия на производительность скважин зависит от толщины продуктивного пласта, его фильтрационных свойств и характера их изменения по площади, толщине и последовательности залегания пропластков с различной проницаемостью. При этом надо отметить, что если вертикальная проницаемость kв много больше горизонтальной проницаемости kг, то увеличение отбора газа из скважины при заданной депрессии наиболее эффективно не за счет увеличения степени вскрытия, а за счет увеличения диаметра скважины. Если же, наоборот, kв  kг, то дебит скважины растет практически пропорционально степени вскрытия (рис. 4.2,кр. 3).

    Считается, что полная перфорация газоносного интервала всегда приводит к увеличению дебита скважины. Однако практика показывает, что прирост дебита скважины за счет полноты вскрытия однородного пласта по сравнению с идентичным пластом, перфорированным до половины газоносного интервала (рис.4.2, кр. 1), может быть настолько незначительным (порядка 14%), что существующая техника измерения профиля притока (дибитомер, шумомер и др.) практически не фиксирует прироста дебита скважины. Приведенная зависимость показывает, что если конструкция скважины не обеспечивает вынос частиц жидкости и твердых примесей, то практически неизбежно образование столба жидкости или песчаной пробки ниже середины интервала перфорации.

    Многопластовая залежь. Если газоносный интервал состоит из нескольких полностью перфорированных пропластков, обладающих различной проницаемостью и гидродинамически взаимосвязанных, то отсутствие заметного прироста дебита особенно ярко выражено в интервалах с низкой проницаемостью (рис. 4.2,кр.4,5,6).

    Оптимальная величина вскрытия. Обобщая приведенные зависимости Q от h следует сделать следующие выводы:

    1) При наличии опасности прорыва конуса подошвенной воды оптимальным вариантом вскрытия однородных, анизотропных (с параметром анизотропии близким к единице) пластов, а также многопластовых залежей, где низкопродуктивный пропласток залегает ниже высокопродуктивного, является относительная толщина вскрытияh = hвск/h 0,5 - 0,6.

    2) При наличии подошвенной воды необходимо вскрывать только часть пласта, обеспечивая при этом практически максимальную, безводную производительность скважин и минимальную опасность прорыва конуса подошвенной воды к ним.

    3) При чередовании высокопроницаемых пропластков с низкопроницаемыми часть перфорированного интервала с низкой проницаемостью вследствие малой производительности перекрываются столбом жидкости или песчаной пробкой и в работе скважины не участвует.
    1   ...   43   44   45   46   47   48   49   50   ...   65


    написать администратору сайта