Общая энергетика
Скачать 173.43 Kb.
|
Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский государственный авиационный технический университет» Кафедра электромеханики ОБЩАЯ ЭНЕРГЕТИКА. КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ Расчетно-графическая работа по дисциплине «Общая энергетика» Выполнил: студент группы Э-221 Зиганбаев А.А. Проверила: Гареева М.Б. Уфа 2021 ОглавлениеВведение III 1.Классификация электрических станций IV 2.Потребление Энергии VII 3.Конденсационные электростанции X 4.Теплоэлектроцентрали XII 5.Атомные электростанции XIV 6.Гидравлические и гидроаккумулирующие электростанции XVII 7.Нетрадиционная энергетика XX 8.Водородная и термоядерная энергетика XXI Заключение XXIII Список литературы XXIV ВведениеЭлектрическая станция – энергетическая установка, служащая для преобразования природной энергии в электрическую. Тип электрической станции определяется прежде всего видом природной энергии. Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п. Тепловые электрические станции, предназначенные только для производства электроэнергии, называют конденсационными электрическими станциями (КЭС). Электростанции, предназначенные для комбинированной выработки электрической энергии и отпуска пара, а также горячей воды тепловому потребителю имеют паровые турбины с промежуточными отборами пара или с противодавлением. На таких установках теплота отработавшего пара частично или даже полностью используется для теплоснабжения, вследствие чего потери теплоты с охлаждающей водой сокращаются. Однако доля энергии пара, преобразованная в электрическую, при одних и тех же начальных параметрах на установках с теплофикационными турбинами ниже, чем на установках с конденсационными турбинами. Теплоэлектростанции, на которых отработавший пар наряду с выработкой электроэнергии используется для теплоснабжения, называют теплоэлектроцентралями (ТЭЦ). В данной работе мы рассмотрим оба вида электрических станций, их принципиальные схемы. Классификация электрических станцийЭлектрической станцией называется комплекс оборудования и устройств, предназначенных для преобразования энергии природного источника в электрическую энергию и тепло. Электрические станции классифицируют по следующим признакам: 1. По виду используемой природной энергии: а) гидроэлектростанции (ГЭС) – электрическая энергия вырабатывается за счет механической энергии воды рек; б) тепловые электрические станции (ТЭС), использующие органическое топливо; в) атомные электростанции (АЭС), использующие атомную энергию. 2. По виду отпускаемой энергии: а) конденсационные тепловые электрические станции (КЭС), отпускающие только электрическую энергию; б) ТЭЦ – тепловые электростанции, отпускающие электрическую и тепловую энергию. Тепловая энергия отпускается в виде отработавшего пара или газа теплового двигателя. 3. По виду теплового двигателя: а) электростанции с паровыми турбинами – паротурбинные ТЭС (основной вид ТЭС); б) электростанции с газовыми турбинами – газотурбинные ТЭС; в) электростанции с парогазовыми установками – парогазовые ТЭС; г) электростанции с двигателями внутреннего сгорания – ДЭС. 4. По назначению: а) районные электростанции общего пользования: конденсационные электростанции – ГРЭС: теплоэлектроцентрали – ТЭЦ; коммунальные электростанции; б) промышленные электростанции, входящие в состав производственных предприятий. Паротурбинные электростанции разделяют по следующим признакам (условно, так как параметры пара и мощности агрегатов и ТЭС возрастают): 1) по мощности агрегатов: малой мощности с агрегатами до 100 МВт; средней – 100÷1000 МВт; большой – более 1000 МВт; 2) по давлению свежего пара низкого давления – до 30 кгс/см2; среднего – 30 ÷50 кгс/см2; высокого – 90÷170 кгс/см2; сверхкритического – 245 кгс/см2. (рkр=225,5 кгс/см2 (22,12 МПа), tkр = 374,16 ºC). 3) по схеме соединений парогенераторов и турбоагрегатов ТЭС: а) блочные электростанции, когда каждый турбоагрегат присоединяется к одному или двум определенным парогенераторам (при мощности турбоагрегатов 150 МВт и выше); б) не блочные электростанции с поперечными связями, когда все парогенераторы и турбины присоединены к общим паровым магистралям; 4) по типу компоновки оборудования и здания: ТЭС закрытого, открытого и полуоткрытого типов. Тепловые электростанции обычно работают совместно с другими электростанциями. Энергосистемой называют совокупность электростанций и подстанций, соединенных между собой линиями электропередачи и имеющих общее централизованное управление. В РФ создана единая энергетическая система (ЕЭС), включающая объединенные энергосистемы Центра, Юга, Волги, Северо-Запада, Кавказа, Урала и Сибири. Промышленными называются электростанции, предназначенные в основном для энергоснабжения предприятий и прилегающих к ним районов, для них характерно: 1) двухсторонняя связь электростанции с основными технологическими агрегатами, (ТЭС являются источниками электроэнергии и тепла для предприятий и потребителями горючих отходов производства и вторичных энергоресурсов); 2) объединение ряда устройств электростанции и предприятия в единую систему, (топливное хозяйство, система водоснабжения, транспортные устройства, ремонтные мастерские и др.); 3) наличие на ряде электростанций паровых турбин для привода нагнетателей воздуха и кислорода. Мощные турбокомпрессоры (до 32 МВт), предназначенные для подачи сжатого воздуха в доменные печи (ТЭЦ металлургических, машиностроительных и химических заводов), которые в этих случаях называют паровоздуходувными станциями (ПВС) или ТЭЦ-ПВС. Потребление Энергии1) Потребление электроэнергии Потребление электрической и тепловой энергии изменяется во времени: в течение суток, недели, года. Графическое изображение изменения нагрузки ТЭС во времени называют графиком нагрузки. Большое значение для ТЭС имеют суточные графики нагрузок: зимний, летний, весенний и осенний за рабочие сутки (в начале, в середине и в конце недели) и аналогично за нерабочие сутки (Рисунок 2 .1). Рисунок 2.1 Суточные графики электрической нагрузки: а - промышленной; б - осветительно-бытовой; в – суммарной Форма суточного графика электронагрузки зависит от времени года, соотношения потребления промышленными и осветительно–бытовыми установками, от числа смен работы предприятий. График промышленной нагрузки (Рисунок 2 .1 а) имеет максимум в дневное время, когда работают все предприятия – с одной, двумя или тремя сменами в сутки. Характерным является быстрый подъем нагрузки в утренние часы, максимум – днем, понижение – ночью. График осветительно–бытовой нагрузки (Рисунок 2 .1 б) имеет небольшой максимум утром, основной максимум вечером (около 16 часов для средней полосы РФ). График суммарной электрической нагрузки имеет совмещение максимумов промышленной и осветительно–бытовой нагрузок зимой около 16 часов, когда освещение включается года до окончания работы односменных предприятий (Рисунок 2 .1 в). Прохождение максимума нагрузки в декабре–январе – ответственный период работы ТЭС (максимальная мощность, обеспечение запасов топлива). Таким образом, зимняя нагрузка имеет два максимума – утренний и вечерний; летняя – три максимума – утренний, дневной (после 1200) и вечерний (см. Рисунок 2 .1 в). Годовой график помесячных максимальных, средних и минимальных нагрузок представлен на Рисунок 2 .2. Годовые графики различают: хронологические (помесячные) и продолжительности (длительности) нагрузок. Нанося последовательно максимальную, среднюю и минимальную нагрузки каждого месяца, получают соответственно три хронологических графика этих нагрузок: Рисунок 2.2 Годовые графики помесячных электрических нагрузок электросистемы: 1 - максимальной; 2 - средней; 3 – минимальной 2) Потребление тепловой энергии Тепловая энергия отпускается теплоэлектроцентралями (ТЭЦ) двум основным видам потребителей – промышленным и коммунальным. В промышленности тепловая энергия используется для технологических процессов в виде перегретого пара 0,5÷1,5 МПа. Минимальный перегрев 25 ºС должен обеспечивать надежный транспорт пара. Коммунальное потребление включает расход тепла на отопление Qот и вентиляцию Qв зданий и на бытовые нужды Qбыт в виде горячей воды с tmax=150 ºC. ( 2.1) Для отопления производственных зданий используют часть технологического пара или горячую воду. Бытовые нужды – потребление тепла коммунальными предприятиями (бани, прачечные, фабрики–кухни и т.д.) и населением (души и ванны квартир и др.). Тепловая нагрузка ТЭЦ, как и электрическая, изменяется во времени. Суточный график промышленной тепловой нагрузки аналогичен графику электрической нагрузки. Летнее потребление меньше зимнего в связи с ремонтом оборудования и снижением теплопотерь в окружающую среду. Промышленное тепловое потребление неравномерно в течение суток и относительно равномерно в течение года. Отопительно–вентиляционное тепловое потребление имеет суточную равномерность и годовую неравномерность, так как является сезонным (Рисунок 2 .3). Летом отопительная нагрузка отсутствует. Рисунок 2.3 Графики отопительно-бытовой (а) и отопительно-бытовой и вентиляционной (б) нагрузок Суточный график бытового потребления тепла неравномерен, имеет небольшой максимум утром и основной – вечером, в особенности в конце недели (Рисунок 2 .3 а). Бытовая тепловая нагрузка принимается постоянной летом и зимой. Однако, летом тепловая нагрузка на бытовое потребление ниже, чем зимой, что обусловливается повышением температуры исходной (сырой) воды. Наличие круглогодовой бытовой тепловой нагрузки улучшает энергетические и технико–экономические показатели ТЭЦ, так как увеличивает энергетически выгодную выработку электроэнергии на тепловом потреблении. Конденсационные электростанцииКонденсационные электростанции (КЭС) — тепловые паротурбинные электростанции, предназначенные для выработки электрической энергии. Рисунок 3.4 Принципиальная технологическая схема конденсационной электростанции, работающей на твердом топливе Топливо, поступающее на электростанцию, проходит предварительную обработку. Так, наиболее часто используемое на ТЭС твердое топливо (уголь) сначала дробится, а затем подсушивается и на специальных мельничных установках размельчается до пылевидного состояния. Комплекс устройств, предназначенных для разгрузки, хранения и предварительной обработки топлива, составляет топливное хозяйство или топливоподачу. Топливоподача 1 и пылеприготовление 2 образуют топливный тракт КЭС (А на Рисунок 3 .4). Угольная пыль вместе с воздушным потоком, создаваемым специальным насосом (воздуходувкой), подается в топку котла 3. Продукты сгорания топлива проходят через специальные очистительные сооружения 7 (золоуловители), где выделяются зола и другие примеси (при сжигании нефти и газа золоуловители не требуются), а оставшиеся газы с помощью дымососа 6 через дымовую трубу 8 выбрасываются в атмосферу. Теплота, получаемая при сжигании топлива в котле, используется для получения пара, который перегревается в пароперегревателе 4 и по паропроводу 9 поступает в паровую турбину 10. В турбине энергия пара преобразуется в механическую работу вращения ее вала, который специальной муфтой соединен с валом генератора 13, вырабатывающим электроэнергию. Отработавший в турбине пар после своего расширения от начального давления при входе в турбину 13—24 МПа до конечного (на выходе) 0,0035—0,0045 МПа поступает в специальный аппарат 11, называемый конденсатором. В конденсаторе пар превращается в воду (конденсат), которая насосом 12 подается обратно в котел, и цикл в пароводяном тракте (Б на Рисунок 3 .4) повторяется. Для охлаждения пара в конденсаторе используется вода, забираемая циркуляционным насосом 14 из водоема 17. Таков общий принцип действия КЭС. На такой электростанции в процессе преобразования энергии неизбежны ее потери. Тепловой баланс, представленный на Рисунок 3 .5, дает общее представление об этих потерях. Рисунок 3.5 Тепловой баланс конденсационной электростанции ТеплоэлектроцентралиК теплоэлектроцентралям (ТЭЦ) относятся электростанции, которые вырабатывают и отпускают потребителям не только электрическую, но и тепловую энергию. При этом в качестве теплоносителей служат пар из промежуточных отборов турбины, частично уже использованный в первых ступенях расширения турбины для выработки электроэнергии, а также горячая вода с температурой 100—150° С, нагреваемая отбираемым из турбины паром. Технологическая схема ТЭЦ отличается от схемы КЭС лишь наличием промежуточных отборов пара из турбины на отопительные и технологические нужды. Пар из парового котла поступает по паропроводу в турбину 1 (Рисунок 4 .6), где он расширяется до давления в конденсаторе, и потенциальная энергия его преобразуется в механическую работу вращения ротора турбины 2 и соединенного с ним ротора генератора 3. Часть пара после нескольких ступеней расширения отбирается из турбины и направляется по паропроводу потребителю пара 7. Место отбора пара, а значит, и его параметры устанавливаются с учетом требований потребителя. При этом чем выше требуемое давление, тем меньше число ступеней турбин до места отбора, т. е. тем меньшее количество электроэнергии вырабатывает каждый килограмм отобранного пара. В современных турбинах предусматривается несколько мест отбора пара. Пар наиболее низких параметров используется для получения горячей воды. Такой пар по паропроводу поступает в сетевой подогреватель- теплообменник 7. Горячая вода, идущая на нужды теплоснабжения, циркулирует между сетевым подогревателем и потребителем по замкнутому контуру при помощи сетевого насоса. Система трубопроводов, обеспечивающих подачу воды от ТЭЦ потребителям и возврат охлажденной воды на ТЭЦ, носит название тепловой сети. Централизованное снабжение потребителей тепловой энергией, полученной от отработавшего в турбине пара при производстве электрической энергии, является основой современной теплофикации. Таким образом, из принципа действия ТЭЦ следует, что до ее конденсатора доходит только небольшое количество пара. Поэтому и потери теплоты с охлаждающей конденсатор водой на таких станциях Рисунок 4.6 Принципиальная схема ТЭЦ, снабжающая потребителей горячей водой: 1 – паровой котел; 2 – паровая турбина; 3 – электрогенератор; 4 – конденсатор; 5 – питательный бак; 6 – подогреватель; 7 – теплообменник значительно меньше, чем на конденсационных станциях, турбины которых не имеют отбора технологического пара, что, в конечном счете, приводит к более высоким тепловым и энергетическим показателям ТЭЦ. В настоящее время разработаны и эксплуатируются теплофикационные энергоблоки мощностью 250 МВт на сверхкритических параметрах пара. Намечено также увеличение единичных мощностей теплофикационных турбин до 600 МВт. Так как теплота на ТЭЦ расходуется на производство электрической и тепловой энергии, то различаются КПД ТЭЦ по производству и отпуску электрической энергии и по производству и отпуску тепловой энергии. Однако для совместной оценки экономической эффективности обоих процессов используется полный (общий) КПД ТЭЦ, который характеризует степень использования теплоты, расходуемой на производство обоих видов энергии одновременно. Значение этого КПД для ТЭЦ, снабженных турбинами с конденсацией и отборами пара, составляет около 60%, а для ТЭЦ, использующих турбины с противодавлением,— 75%. Атомные электростанцииПривлекательность ядерной энергетики заключается в том, что при делении ядер урана 235U выделяется большое количество энергии. При полном делении 1 кг 235U выделяется 86▪106 МДж (23▪106 кВт- ч) энергии, а при сжигании 1 кг каменного угля выделяется только 8 кВт- ч энергии. Анализируя эти данные можно сделать вывод, что ядерное топливо эффективнее традиционного органического топлива в 3000000 раз. Источником ядерной энергии могут быть либо тяжелые ядра, для которых возможны ядерные превращения, сопровождающиеся их делением на более мелкие ядра, либо легкие элементы, вступающие в реакции синтеза. Рассмотрим процесс деления тяжелых ядер, лежащий в основе работы ядерного реактора АЭС. В состав атомов элементов, как известно, входят электрон, протон, нейтрон. Атомы состоят из ядер, вокруг которых вращаются электроны. Сами ядра состоят из очень плотно «упакованных» с помощью ядерных сил нейтронов и протонов. Ядерные силы действуют на очень коротких расстояниях, соизмеримых с размерами ядер, и превосходят по значению все другие силы, в том числе кулоновские силы отталкивания между протонами ядер. Деление ядер происходит при бомбардировке их нейтронами. Поскольку нейтрон имеет нулевой заряд, кулоновские силы не могут препятствовать проникновению нейтрона в ядро. Нейтрон, который не связан с тяжелым ядром, попав в него, не изменяет полную энергию связи всех протонов и нейтронов (нуклонов) ядра, но изменяет среднюю энергию связи, приходящуюся на один нуклон, в результате чего эта энергия в новом ядре станет меньше, чем в старом. Нуклоны станут меньше связаны друг с другом, а это приведет к тому, что в таких ядрах, как уран или плутоний, ядерных сил связи будет недостаточно для удерживания всех нуклонов вместе. Произойдет деление ядра на два других (осколки деления) с одновременным испусканием нескольких отдельных нейтронов, которые в свою очередь вызывают новые деления ядра, при этом процесс деления сопровождается выделением огромного количества энергии. Освобождаемая энергия проявляется в виде кинетической энергии продуктов деления (осколков), что при их торможении приводит к разогреву окружающей среды. Выделяемая тепловая энергия с помощью теплоносителей передается рабочему телу турбины для выработки электроэнергии генератором. В современных атомных электростанциях используются в основном реакторы на тепловых (медленных) нейтронах. Рассмотрим в связи с этим, что же представляет собой наиболее распространенный в энергетике ядерный реактор на тепловых нейтронах. В настоящее время существует несколько типов реакторов, однако всем им присущи некоторые общие черты. Все они имеют прежде всего так называемую активную зону 1 (Рисунок 5 .7), в которую загружается Рисунок 5.7 Упрощенная схема АЭС ядерное топливо, содержащее 235U и замедлитель (обычно графит или вода). Для сокращения утечки нейтронов из активной зоны последнюю окружают отражателем 2, выполненным обычно из того же материала, что и замедлитель. За отражателем снаружи реактора размещается бетонная защита 5 от радиоактивных излучений. Загрузка реактора ядерным топливом обычно значительно превышает критическую. Чтобы по мере выгорания топлива непрерывно поддерживать реактор в критическом состоянии, в активную зону вводят сильный поглотитель нейтронов в виде стержней 4 из карбида бора. Такие стержни называют регулирующими или компенсирующими, поскольку они компенсируют дополнительную нагрузку топлива (избыточную реактивность реактора). По мере выгорания топлива эти стержни постепенно извлекаются из активной зоны. Часть этих стержней используется также для регулирования мощности реактора, осуществляемого с помощью автоматики. В процессе деления ядра основная доля освобожденной энергии переходит, как уже говорили, в кинетическую энергию осколков, при торможении которых выделяется теплота, отводимая теплоносителем 3 в теплообменник-парогенератор 5, где она трансформируется в рабочее тело — пар. Пар поступает в турбину 7 и вращает ее ротор, вал которого соединен с валом генератора 8. Отработавший в турбине пар попадает в конденсатор 9, после которого сконденсированная вода вновь идет в теплообменник, и цикл повторяется. Основным достоинством АЭС является относительная независимость от источников сырья (урановых месторождений) благодаря компактности горючего, легкости его транспортировки и продолжительности использования. Так на Нововоронежской АЭС на выработку 1 млн. кВт-ч электроэнергии расходуется всего около 200 г урана. Современные АЭС на тепловых нейтронах имеют КПД несколько ниже, чем у блочных КЭС сверхкритических параметров. Капиталовложения на 1 кВт установленной мощности у них выше, хотя себестоимость вырабатываемой электроэнергии, как правило, более низкая. Наибольшую долю электрической энергии, вырабатываемой на АЭС, в суммарном энергопроизводстве имеют: Франция ─ 78%, Бельгия ─ 60%, Украина ─ 47%, Швеция ─ 46%, Швейцария, Словения и Венгрия ─ по 40%. АЭС обеспечивают примерно 17% общемирового производства электроэнергии. Гидравлические и гидроаккумулирующие электростанцииНа гидроэлектростанциях электрическая энергия получается в результате преобразований энергии водного потока. Каждая ГЭС состоит из: · гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и величину напора, · энергетического оборудования, преобразующего энергию движущейся под напором воды в электрическую. Такое преобразование осуществляется с помощью гидравлической турбины, основным элементом которой является рабочее колесо. Вода, попадая из водохранилища по напорному трубопроводу на лопасти рабочего колеса, вращает его, а вместе с ним и ротор генератора, вырабатывающего электроэнергию. По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, смешанные, гидроаккумулирующие и приливные. Существуют две основные схемы концентрации напора гидротехническими сооружениями — плотинная и деривационная. Рисунок 6.8 Плотинная схема концентрации напора В плотинной схеме предусмотрено сооружение плотины, перегораживающей в выбранном створе русло реки, в результате чего образуется разность уровней воды в верховой и низовой по течению сторонах плотины. В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40 м. Получают распространение гидроаккумулирующими электростанциями (ГАЭС). Процесс гидравлического аккумулирования энергии сводится к следующему. В ночное время, когда нагрузка энергосистемы сильно снижается, включаются электродвигатели насосов ГАЭС, накачивающие воду из нижнего бассейна в верхний (рис. 2.14). Рисунок 6.9 Схема гидроаккумулирующей электростанции 1 — верхний бассейн, 2 — напорный трубопровод, 3 — здание ГЭС, 4 — нижний бассейн, 5 — уравнительный резервуар, 6 — водоприемник На первых ГАЭС устанавливали две раздельные пары машин: гидротурбину с генератором и электродвигатель с насосом. Такие схемы по числу устанавливаемых машин называют четырехмашинными. Появление обратимых гидромашин, работающих как в насосном, так и турбинном режиме, позволило перейти к двухмашинной схеме ГЭС, имеющей агрегаты, на одном валу которых размещается как обратимая электрическая машина, так и обратимая гидравлическая. Достоинством ГАЭС в современных условиях работы энергетических систем является то, что она искусственно создает гидроэнергетические ресурсы, что важно для тех районов, где этих ресурсов недостаточно. Кроме того, ГАЭС играют существенную роль в покрытии суточного графика нагрузки системы, создавая дополнительную нагрузку в часы ночного провала электропотребления и пиковую мощность в часы повышенного спроса на электроэнергию. Коэффициент полезного действия ГАЭС определяет КПД насосного и турбинного режимов. Поэтому он будет меньше, чем КПД ГЭС, и обычно не превосходит 0,7—0,78. Это значит, что из каждых 100 кВт-ч, забираемых ГАЭС из системы, обратно в нее возвращается примерно 75 кВт-ч. Однако этот недостаток смягчается тем, что дневная энергия, когда ГАЭС работает в турбинном режиме, оценивается значительно выше ночной, когда часть ее по существу является бросовой. Энергоэкономическая эффективность ГАЭС в значительной мере определяется используемым напором. Чем больше напор, тем меньшими объемами водохранилищ можно обойтись для одной и той же установленной мощности. Всего в мире эксплуатируется и строится свыше 200 ГАЭС, охватывающих диапазон напоров от нескольких метров до 1770 м. Нетрадиционная энергетика Биоэнергия Наибольшее применение в практике ЕС пока получила переработка биомассы в электроэнергию, тепло и в моторное топливо. Источниками ее получения служат разлагаемые отходы сельского хозяйства (солома, навоз, трава и др.) и лесного промысла (опилки, щепки, кора, сучья); продовольственные и непродовольственные сельхозкультуры и продукты их переработки кукуруза, пшеница, ячмень, крахмал, рапс, животный жир, подсолнечник, вино, сорго и др.); некоторые быстрорастущие деревья и кустарники (ива, береза, тополь и др.), а также фракции промышленного и коммунального мусора, содержащие клетчатку. Достоинства биомассы - широкая доступность, относительно низкая стоимость и множественность путей переработки в конечный энергопродукт (от сжигания до использования анаэробных бактерий). Поэтому уже в 2004 г. за счет этого источника покрывалось 4.2% первичного энергопредложения в ЕС (70 млн. т н.э.) с перспективой роста до 150 млн. т н.э. в 2010 г. Биомасса используется в основном в небольших агрегатах по локальному энерго- и теплоснабжению, но главные надежды связываются с ее применением для изготовления моторного топлива - на базе ее переработки производятся биодизель (из растительных или животных жиров), биоэтанол (путем ферментации сельхозкультур, содержащих сахарозу и крахмал) и биогаз. За последние десять лет производство биоэтанола в ЕС выросло с 47 тыс. т до 1.34 млн. т, производство биодизельного топлива достигло 16 млн. т. Сейчас они используются как присадки к бензину и дизельному топливу в размере 5-15%, но в перспективе предполагается расширить сферу их применения. Вместе с тем, увлечение биотопливом может привести к уничтожению лесов и кустарников и, более того, возникновению дефицита по ряду пищевых продуктов (зерно, масло, вино). Предвестником этого стал рост цен на продовольствие, наблюдавшийся в 2006-2007 гг. Как отмечают эксперты IЕА, конкуренция за использование сельскохозяйственного сырья и отвлечение его на рынок биотоплива остается одной из главных причин высокого уровня цен на продовольствие. Поэтому акцент ныне делается на производстве биотоплива "второго поколения" - из непищевого сырья и специально культивируемых морских водорослей. Кроме того, предполагается ограничить сельхозплощади, занятые биотопливными культурами, тем более что сжигание биотоплива в традиционных сельских условиях (печи, котлы и т .п.) малоэффективно. Ветроэнергетика Второй по значению и особенно быстрорастущий возобновляемый источник - кинетическая энергия ветра, используемая для производства электроэнергии. Начиная с 1980 г. установленная мощность ветровых турбин в ЕС выросла в 290 раз, а стоимость генерации за тот же период снизилась на 80%. К 2020 г. мощность ветровых установок намечено довести с нынешних 40 до 180 млн. кВт. Производство электроэнергии на них достигнет 425 млн. кВт-ч. Преимущества такого способа получения энергии обусловлены практически неисчерпаемым потенциалом ветра, повышением технологичности монтажа установок и техобслуживания. Но есть и недостатки. Ограниченность мест с ветром необходимой силы и постоянства и связанная с этим неравномерность выработки электроэнергии предопределяют сложность подключения ветротурбин к регулярным сетям снабжения и необходимость их дополнения накопительными батареями. Ожидается, что на рубеже 2010 г. производство электроэнергии на ветроустановках превысит ее объемы, генерируемые крупными ГЭС, а к 2030 г. покроет 60% общего прироста электрических мощностей в ЕС. С целью экономии земельных площадей и достижения большей силы и постоянства поддува начато перемещение ветроустановок большой мощности на морские оффшорные платформы, которые, как ожидается, смогут производить 27% всей ветровой энергии в Евросоюзе. В республике Беларусь в настоящее время действуют 3 ветро-энергетические установки. Строительство этих установок будет расширятся. Специалисты прогнозируют, что через лет 15 мощность ветроэнергетических установок будет равна мощности гидростанций. Водородная и термоядерная энергетикаВместе с тем в центр внимания выдвигается проблема освоения не только уже известных источников энергии, но и действительно новых - водорода и термоядерной реакции, которые уже рассматриваются как реальные элементы неуглеродной энергетики будущего. Обладая всего одним протоном и одним электроном, водород является простейшим и наиболее распространенным химическим элементом и энергоносителем во Вселенной и на Земле. "Заманчивость водорода в этом качестве состоит в наличии экологически чистых способов получения и прямого преобразования энергии его окисления в электрическую и тепловую энергию с достаточно высоким кпд. В сфере транспорта оно реализуется через установку на автомобилях топливных элементов с КПД 60% против 20-30% -для двигателей внутреннего сгорания. Это принципиально новое топливо уже применяется в экспериментальном порядке на общественном транспорте девяти крупных городов ЕС. Пока для его производства требуется больше энергии, чем оно само выделяет. К тому же сеть специализированных заправок для такого транспорта грозит стать очень дорогой. Однако уже с 2010 г. водород появляется как самостоятельная строка в энергетических прогнозах ЕС (0.2 млн. т н.э. в 2020г.) Вопреки первоначальным ожиданиям термоядерная энергия сможет выйти на коммерческий рынок не ранее середины века, хотя для ее освоения уже строится экспериментальная установка в г. Кадараш (Франция). Обсуждаются по крайней мере еще пять концептуальных проектов термоядерных энергетических реакторов мощностью 1500 МВт каждый. Но пока атомная энергетика в ЕС основывается главным образом на реакции деления урана. Уже сейчас в электроэнергетике Евросоюза АЭС дают 30% энергии против 55% по газу и углю, 10% - по ГЭС и всего 5% по возобновляемым источникам энергии. Наконец, стоит упомянуть и химические источники тока, которые пока используются в ЕС в форме аккумуляторных батарей, хотя и имеют свой обширный рынок в информатике, медицине и на транспорте. Здесь имеются большие надежды на новые аккумуляторные батареи, созданные с помощью нанотехнологий. Такие батареи имеют небольшой вес и время на подзарядку сокращается в десятки раз. Традиционные углеводородные источники энергии не собираются сдавать своих позиций. Совершенствуются технологии ввода в хозяйственный оборот тяжелых видов нефти, битуминозных песчаников и газогидратов. Их запасы в мире примерно равны газонефтяным запасам. Модифицируются технологии "чистой" газификации угля, регенерации ядерного топлива, улавливания и повторного использования углерода и т.д. Главное же, впечатляющих успехов повсеместно достигает экономия энергии и именно она, а не возобновляемые источники, служит ныне главным компенсаторным фактором в энергобалансе. ЗаключениеВ данном реферате полностью рассмотрены все варианты устройства ТЭС и КЭС в современной энергетике (в виде элементарных схем), с подробным описанием. Мы можем сказать, что во всех циклах работы станций достигнут максимально возможный КПД. Можно сказать, что вид станции выбирается в зависимости от локальных факторов, таких как: вид требуемой энергии, способ охлаждения пара, вид топлива, наличие транспортной возможности доставки топлива на станцию и т.д. Мы так же рассмотрели требования к станциям, которые включают в себя высокую производительность, бесперебойность производства, отсутствие засорений окружающей среды выбросами. Так же рассмотрена экономическая составляющая, график нагрузок сети. В связи с растущим влиянием электростанций на окружающую среду человечество вынуждено искать альтернативные источники электрической энергии. Уже сейчас во многих развитых странах Европы и Америки начинают массово внедряться в нашу жизнь мини-станции, работающие на энергии солнца, ветра и других источников. Однако их энергия никогда не сможет в полной мере заменить АЭС, ГЭС и ТЭЦ. Список литературыhttps://referatbank.ru/referat/preview/7825/referat-tipy-elektrostanciy.html (11.05.2021) https://lektsii.org/16-16878.html (11.05.2021) |