Главная страница

бх лекции. Общие пути обмена аминокислот


Скачать 1.21 Mb.
НазваниеОбщие пути обмена аминокислот
Анкорбх лекции
Дата18.10.2022
Размер1.21 Mb.
Формат файлаdoc
Имя файлаAzotisty_obmen_1.doc
ТипДокументы
#739846
страница2 из 3
1   2   3


Обмен глицина и серина.

Гли и сер относятся к заменимым, глюкопластичным аминокислотам.

  1. Глицин, много содержится в белках, не имеет радикала, оптически неактивна, заменимая, глюкогенная NН2-СН2-СООН

Используется для синтеза креатина в почках

Почки

Печень

Мышцы требуют Е (кратковременная интенсивная работа). Должен быть запас Е-креатинфосфат.



Может образовываться в других клетках. Это средство транспорта Е внутри клетки.

Фосфокреатин используется мышцами для кратковременной работы.

Продукт распада креатина креатин



Креатинфосфат легко проходит в цитоплазму, он менее полярен, чем АТФ. Креатинфосфат отдает Фн на АДФ, а креатин возвращается в митохондрии. Такая транспортная функция креатинфосфата характерна для всех клеток.

  1. Образование -аминолевулиновой кислоты.

  2. Синтез пуриновых оснований. Глицин является остовом – это скелет.



  1. Синтез вторичных желчных кислот. Желчные кислоты участвуют в переваривании жиров, холестеридов. Желчные кислоты активируются глицином (холевая – гликохолевая).

Глицин – нейромедиаторная АМК – тормозной медиатор нервной системы (30 минут). Глицин принимает участие в синтезе белков, пуриновых нуклеотидов, гема, парных желчных кислот, кератина, глутатиона.

Г лутатион

Сер

Т каневые белки






Г люкоза

М уравьиная кислота

Гли

Л ипиды

Гиппуровая кислота



Гем

Креатин

Тре

Пурины (ДНК, РНК)







Желчные кислоты


Глицин участвует в образовании гема:

СООН СН2-NH2 HSKoA COOH

| | B6 |

С Н2 + COOH CH2 + CO2

| -аминолевули- |

СН2 натсинтаза CH2

| |

COSKoA C=O

|

CH2-NH2

-аминолевулиновая кислота

В качестве кофермента -аминолевулинансинтаза содержит витамин В6. -аминолевулинсинтаза – аллостерический, ключевой фермент синтеза гема. Ингибируется активность фермента по принципу обратной отрицательной связи – гемом.

Глицин принимает участие в синтезе креатина. Креатин обеспечивает работающую мышцу АТФ. Синтез креатина идет в почках и печени. В почках образуются гуанидинуксусная кислота:

NH2 NH2 NH2 NH2

| | | |

C=NH + CH2 (CH2)3 + C=NH

| | | |

NH COOH CH-NH2 NH

| глицин | |

(CH2)3 COOH CH2

| орнитин |

CHNH2 COOH

| гуанидинуксусная

COOH кислота

Аргинин

Гуанидинацетат с кровотоком поступает в печень, где в результате реакции трансметилирования дает креатин:

NH2 NH2 NH

PO3H2

| | |

C =NH CH3 C=NH АТФ C=NH

| | |

NH N-CH3 N-CH3

| | |

CH2 CH2 CH2

| | |

COOH COOH COOH

Креатин Креатинфосфат

Источником метильного радикала является метионин.

Серин – заменимая аминокислота, углеродная часть которой образуется из глюкозы:

Г лю 3-ФГК НАД НАДН

г лутамат -кетоглутарат



Серин – содержит ОН–группу, заменимая, глюкогенная. Является источником одноуглеродных фрагментов, которые идут на синтез БАВ (гормоны, медиаторы).

Серин является донатором одноуглеродных радикалов: метила, гидроксиметилена, формила.







Нарушения обмена ДОФА-амина

  1. Паркинсонизм – мышечная дрожь, ригидность мышц (дегенерация ДОФА-амин синтезирующих нейронов). Можно моделировать паркинсонизм с помощью амфитамина



Лечат с помощью ДОФА (предшественник), легко проникает через мембраны.

  1. Шизофрения – избыток накопления ДОФА-амина.

Обмен цистеина и метионина.

В молекулах белка обнаружены 3 серосодержащие аминокислоты: метионин, цистеин, цистин.

Цистеин в организме синтезируется из метионина.

Функции цистеина:

  1. Цистеин участвует в образовании цистина:



  1. При образовании цистина возникает дисульфидная связь S-S между двумя полипептидными цепями, что способствует стабилизации третичной структуры белка.

  2. Цистеин входит в состав трипептида глутатиона–Г–SH. Глутатион обеспечивает сохранение ферментов в активной форме. Глутатион участвует в ингибировании белков. Например, инсулина.

  3. Цистеин превращается в таурин:



СО2 СО2


Таурин используется для синтеза парных желчных кислот.

  1. Цистеин входит в состав активных центров ферментов.

Метионин – незаменимая аминокислота.

Функции метионина:

  1. Метионин является источником одноуглеродного радикала – метила, который используется в реакциях трансметилирования. Непосредственным источником метильных групп является производное метионина – S-аденозилметионин.

  2. Метионин участвует в синтезе креатина. Синтез креатина происходит в печени и почках. В почках образуется гуанидинацетат из аргинина и глицина:



В печени гуанидинацетат взаимодействует с S-аденозилметионином и образуется креатин:



  1. Метионин участвует в реакциях трансметилирования в синтезе: адреналина, мелатонина, азотистых оснований.

В результате реакции трансметилирования образуется гомоцистеин.



4. Гомоцистеин превращается в цистеин:

+

мет гомоцистеин серин цистатионин

+ NH3 +

В качестве кофермента цистатионин- -синтаза и цистатионин- -лиаза содержат пиридоксальфосфат (В6).

Гомоцистеин может превращаться в метионин путем метилирования.

Гомоцистеин может превращаться в гомоцистин. Накопление гомоцистина в тканях и крови – характерный симптом наследственной недостаточности ферментов, а также признак недостаточности витаминов В6 и В12. Гомоцистин накапливается, если нарушается превращение гомоцистеина в метионин и цистеин.



Гомоцистинурия – высокая концентрация гомоцистина и метионина. Нарушение умственного развития и скелета.

Цистинурия- выделение цистина с мочой: цистиновые камни в мочевых путях.







выделяют 2 причины образования блоков:

  1. Наследственная недостаточность ферментов, участвующих в обмене.

  2. Недостаточность (гиповитаминоз) В6, В12, фолиевой кислоты.

При блоке 1 развивается гомоцистинурия.

Биохимически накапливается мет и гомоцистин, т.к. гомоцистеин не превращается в цистатионин. Гомоцистин выделяется с мочой.

Клинически: нарушения со стороны соединительной ткани, сердечнососудистой системы, свертывающей системы, образование тромбов. Уродства черепа – башневидный череп, вывернутые глазные яблоки (подвывих хрусталика), умственная отсталость.

При блоке 2 развивается цистатионинурия.

Биохимически повышается концентрация цистатионина, уменьшается цистеина.

Цистинурия – в моче выделяется в 50 раз больше нормы цистина, лизина, аргинина, орнитина.

Причиной заболевания является нарушение реабсорбции цистина и нарушением всасывания остальных аминокислот.

Для людей с этой патологией характерно образование камней.

Обмен дикарбоновых аминокислот.

Глутаминовая кислота – моноаминодикарбоновая, заменимая, глюкогенная.

  1. Необходима для трансдезаминирования аминокислот:



  1. Связывает NH3 в нервных клетках, прямо на месте, по мере образования:

  2. + NH3 + АТФ

Глн входин в полипептидную цепь белка, это продукт обезвреживания NH3.



Это процесс сохранения кислотно-щелочного равновесия.

Основной щелочной эквивалент Na+, его нельзя терять с мочой. Na+ реабсорбируется, процесс регулируется гормонально. Вместо Na+ выводится .

  1. Глутамин является возбудительным медиатором, в процессе метаболизма превращается в тормозной медиатор.



-аланин – заменимая, глюкогенная АМК, много в машечной ткани.

Здесь существует 2 цикла глю – лак и глю – ала.



Пируват аминируется или трансаминируется и образуется ала. Благодаря этому:

  1. меньше образуется лактата

  2. связывается определенное количество NH3 (его много в рабодающей мыщце за счет дезаминирования).

В виде аланина NH3 идет в печень, где обезвреживается путем синтеза мочевины.

Аргинин – диаминомонокарбоновая кислота, заменимая, гликогенная.



  1. О тдача гуанидиновой группы в виде NH2-CО-NH2 (мочевины)

  2. Отдача на гли гуанидиновой группы и образование креатина. При этом образуется орнитин NH2-(CH2)3-CH(NH2)-COOH. Его мало в пищевых продуктах, он не входит в белки, но он необходим для синтеза мочевины.

Основа для синтеза орнитина – аргинин.
Аспарагиновая кислота – моноаминодикарбоновая кислота, заменимая, гликогенная.

  1. У частвует в обезвреживании NH3 с образованием аспарагина (связыв. NH3 в 10 раз меньше, чем глу). Асн входит в полипептидную цепь (в геноме есть триплет).

  2. При дезаминировании превращается в ЩУК.

Два источника ЩУК

а) асп (энергонезависимый путь)

б) Карбоксилирование пирувата (энергозависимый путь).
Без ЩУК не идет ЦТК, невозможен для многих веществ путь превращения в глю, т.е. глюконеогенез.

  1. Асп – основа для синтеза пиримидиновых оснований. 4 положения из асп кислоты (по Лениджиру только 3) 2 остальных положения из карбомаилфосфата. Обезвреживание NH3 связано с синтезом пиримидиновых оснований.



  1. Асп источник и -аланина (встречается в КоА, кранозин, ансериндипептиды – находится в мышечной ткани.)

В других тканях таких дипептидов мало, нужны для функционирования мышечной ткани и повышения физической работоспособности.


Обмен триптофана.

Триптофан – незаменимая кислота.



В физиологических условиях 95% триптофана окисляются по кинурениновому пути и не более 1% по серотониновому.

Основной обмен триптофана приводит к синтезу НАД, уменьшая потребность организма в витамине РР.



Обмен фенилаланина и тирозина.

Фен – незаменимая аминокислота. Тирозин может синтезироваться из фенилаланина. Глюко-кетогенные аминокислоты.





Синтез катехоламинов (адреналина, норадреналина)


Синтез тироксина
.

Обмен разветвленных аминокислот.

Вал, лей, илей.

Незаменимые аминокислоты.

Вал глю (пропионил-КоА сукцинил-КоА глю)

Лей кетокислота

Илей глю + кето (ацетил-КоА + пропионил-КоА)



фумарат



глю

Лейцин





-ОМГ-КоА

Ацетоацетат Ацетил-КоА

Структура и свойства нуклеопротеидов.

Функция нуклеопротеидов заключается в хранении и передаче наследственной информации.

Состоят из белков и нуклеиновых кислот. Простетической группой нуклеопротеидов является нуклеиновая кислота.

При легком гидролизе белок дает пептиды, а нуклеиновые кислоты дают нуклеотиды или нуклеозиды.

При жестком гидролизе образуются аминокислоты, азотистые основания (аденин, гуанин, урацил, цитозин, тимин), рибоза, дезоксирибоза.
1   2   3


написать администратору сайта