Главная страница

материаловедение. Оглавление 1 Материаловедение как наука, характеристика металлов 3


Скачать 0.53 Mb.
НазваниеОглавление 1 Материаловедение как наука, характеристика металлов 3
Анкорматериаловедение.doc
Дата06.02.2018
Размер0.53 Mb.
Формат файлаdoc
Имя файламатериаловедение.doc
ТипДокументы
#15282
страница11 из 15
1   ...   7   8   9   10   11   12   13   14   15

60. Твердые сплавы. Состав, свойства, применение:


Твёрдые сплавы — твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвёрдых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанные кобальтовой металлической связкой, при различном содержании кобальта или никеля.

Твёрдые сплавы различают по металлам карбидов, в них присутствующих: вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В; титано-тантало-вольфрамовые — ТТ7К12, ТТ10К8Б.Безвольфрамовые ТНМ20, ТНМ25, ТНМ30

По химическому составу твёрдые сплавы классифицируют:

  • вольфрамокобальтовые твёрдые сплавы (ВК);

  • титановольфрамокобальтовые твёрдые сплавы (ТК);

  • титанотанталовольфрамокобальтовые твёрдые сплавы (ТТК).

Твёрдые сплавы по назначению делятся (классификация ИСО) на:

  • Р — для стальных отливок и материалов, при обработке которых образуется сливная стружка;

  • М — для обработки труднообрабатываемых материалов (обычно нержавеющая сталь);

  • К — для обработки чугуна;

  • N — для обработки алюминия, а также других цветных металлов и их сплавов;

  • S — для обработки жаропрочных сплавов и сплавов на основе титана;

  • H — для закаленной стали.

Применение специальных твердых сплавов дает возможность вести обработку металлов со сверхвысокими скоростями резания, поскольку эти сплавы обладают очень высокой твердостью, износоустойчивостью и красностойкостью.

Твердые сплавы для режущего инструмента, получаемые методом порошковой металлургии, состоят из твердых карбидов W, Ti, Ta и вязкой связки Со. Чем выше содержание Со в сплаве, тем выше ударная вязкость, но ниже твердость. Температура красностойкости таких сплавов до 1000-1050°С.

Примеры маркировки:

ВК2 - вольфрамокобальтовый твердый сплав, содержащий 2% Со и 98% W ;

Т5К10 - вольфрамотитанокобальтовый твердый сплав, содержащий 10% Со, 5% TiС и 95% WC;

ТТ10К8 - вольфрамотитанотанталокобалътовый твердый сплав, содержащий 8% Со, 10% TiС +TаС , 82% WC .

Хорошо зарекомендовали себя новые твердые сплавы, не содержащие дефицитного вольфрама. В этих сплавах используют TiС и связку из Ni и Мо .

Примеры маркировки:

КТС-1 - содержат 17-15% Ni; 9-7% Мо , остальное TiC (карбид титана);

ТН-20 - содержит 20% Ni , 5-10% Mo , остальное TiC (титано-никелевый) .

61. Сплавы с высоким электросопротивлением. Свойства, маркировка, применение:


Сплавы с высоким электрическим сопротивлением применяют для изготовления электронагревателей и элементов сопротивлений (рези­сторов) и реостатов. Сплавы для электронагревателей обладают высокой жаростойкостью, высоким электрическим сопротивлением, удовлетворительной пластичностью в холодном состоянии.
Указанным требованиям отвечают железо-хромоалюминиевые сплавы, например марок Х13Ю4 (≤ 0,15 % С; 12 — 15% Сr; 3,5 — 5,5 % Аl), 0Х23Ю5 (≤ 0,05 % С; 21,5 — 23,5 % Сr; 4,6 — 5,3 % Аl), и никелевые сплавы, например марок Х15Н60 — ферронихром, содержащий 25% Fе, Х20Н80 — нихром. Стойкость нагревателей из железохромоалюминиевых сплавов выше, чем у нихромов. Сплавы выпускают в виде проволоки и ленты, применяют для бытовых приборов (сплавы Х13Ю4, Х15Н60, Х20Н80), а так­же для промышленных и лабораторных печей (0Х23Ю5).

62. Сплавы с эффектом «Памяти формы»:


Это сплав, обладающий  эффектом “ памяти формы”.  Такие  сплавы  после  пластической  деформации  восстанавливают  свою  первоначальную  геометрическую  форму  в  результате  нагрева  (эффект “памяти формы”)  или  непосредственно  после  снятия  нагрузки (сверхупругость).

Лидером среди материалов с памятью формы по применению и по изученности является никелид титана. Никелид титана обладает:

1.Превосходной коррозионной стойкостью.

2. Высокой прочностью.

3. Хорошими характеристиками формозапоминания. Высокий коэффициент восстановления формы и высокая восстанавливающая сила. Деформация до 8 % может полностью восстанавливаться. Напряжение восстановления при этом может достигать 800 МПа.

4.Хорошая совместимость с живыми организмами.

5.Высокая демпфирующая способность материала.

Недостатки:

1.Из-за наличия титана сплав легко присоединяет азот и кислород. Чтобы предотвратить реакции с этими элементами при производстве надо использовать вакуумное оборудование.

2.Затруднена обработка при изготовлении деталей, особенно резанием. (Оборотная сторона высокой прочности).

3.Высокая цена. В конце XX века он стоил чуть дешевле серебра.

При современном уровне промышленного производства изделия из никелида титана (наряду со сплавами системы Cu-Zn-Al) нашли широкое практическое применение и рыночный сбыт
Эфект памяти формы — явление возврата к первоначальной форме при нагреве, которое наблюдается у некоторых материалов после предварительной деформации.
В ряду функциональных свойств памяти формы важное теоретическое и практическое значение принадлежит явлению так называемой деформации ориентированного превращения.Смысл этого наследственного феномена заключается в следующем. Если охлаждаемое под напряжением тело разгрузить в области температур реализации пластичности прямого мартенситного превращения и не прекратить понижение температуры, далеко не всегда продолжающееся охлаждение не будет вызывать макроскопического деформирования. Наоборот, чаще всего деформация продолжает накапливаться, как если бы материал почти не разгружали. В других случаях имеет место интенсивный возврат при охлаждении. Такие свойства, первое из которых принято называть деформацией ориентированного превращения, второе - аномальным возвратом деформации, связывают с подрастанием возникших под нагрузкой кристаллов мартенсита - в случае деформации ориентированного превращения кристаллов "положительной" ориентации, а в случае аномального возврата - "отрицательной" ориентации. Названные явления могут быть инициированы, в частности, ориентированными микронапряжениями.

1   ...   7   8   9   10   11   12   13   14   15


написать администратору сайта