Главная страница

электромех. Определение синхронного генератора. 3 Устройство синхронного генератора. 3


Скачать 272.64 Kb.
НазваниеОпределение синхронного генератора. 3 Устройство синхронного генератора. 3
Анкорэлектромех
Дата29.03.2021
Размер272.64 Kb.
Формат файлаdocx
Имя файлаэлектромех.docx
ТипДокументы
#189427

Оглавление

  1. Определение синхронного генератора. 3

  2. Устройство синхронного генератора. 3

  3. Регулировочные характеристики синхронного генератора. 5

  4. Фазный ротор. 11

  5. Преимущества двигателей с фазным ротором. 13

  6. Список литературы. 14


1.Синхронные генераторы. Фазный ротор.

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью - в нее подключены иные генераторы. Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Устройство синхронного генератора обусловлено наличием таких элементов, как:

1.Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.

2.Якорь, или статор (недвижимый), в который включается обмотка.

3.Обмотка агрегата.

4.Переключатель катушки статора.

5.Выпрямитель.

6.Несколько кабелей.

7.Структура электрического компаундирования.

8.Катушка ротора.

9.Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС). ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

рис.1

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора. И результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии. Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

Первая стадия возбуждения, то есть начальная.

Работа вхолостую.

Подключение к сети способом точной синхронизации либо самосинхронизации.

Работа в энергетической структуре с имеющимися нагрузками или перегрузками.

Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.

Электро-торможение аппарата.

На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части: электромагнит либо постоянный магнит, что производит магнитное поле. Обмотка с индуцирующейся переменной ЭДС. Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников. Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников - внутренний - взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).

Для оценки функции синхронных генераторов применяются те же самые характеристики, какие применяются в генераторах постоянного тока. Только некоторые условия различаются и дополняются.

Главные характеристики синхронного генератора такие:

Холостой ход – это зависимость ЭДС прибора от токов возбуждения, одновременно является показателем намагничивания магнитных цепей машины.

Внешняя характеристика – это зависимость напряжения устройства от токов нагрузки. Напряжение агрегата меняется по-разному в зависимости от увеличения нагрузки при различных ее видах. Причины, что вызывают такие изменения, следующие:

Падение значения напряжения на индуктивном и активном сопротивлении обмоток устройства. Увеличивается по мере того, как увеличивается нагрузка прибора, то есть его ток.

Изменение ЭДС агрегата. Происходит в зависимости от реакции статора. При активных нагрузках уменьшение напряжения будет вызвано падением напряжения во всех обмотках, потому что реакция статора влечет за собой увеличение ЭДС генератора. При активно-емкостных видах нагрузки эффект намагничивания вызывает увеличение текущего значения напряжения по сравнению с номинальным показателем.

Регулировочные характеристики синхронного генератора – это зависимость токов возбуждения от токов нагрузки. В процессе работы синхронных агрегатов нужно поддерживать постоянное напряжение на их зажимах независимо от характера и величины нагрузок. Этого несложно достигнуть, если регулировать ЭДС генератора. Это можно сделать путем изменения токов возбуждения автоматически в зависимости от изменений нагрузок, то есть при активно-емкостной нагрузке нужно уменьшать ток возбуждения для поддержания постоянного напряжения, а при активно-индуктивной и активной — увеличивать.

рис.2

Мощность синхронного генератора определяется такими значениями:

Соответствующим напряжением в электросети.

Своей ЭДС.

Углом измерения.

Синхронный генератор переменного тока – это электромашина, что преобразует механическую вращательную энергию в электрическую энергию переменных токов.

Мощные генераторы таких токов устанавливают:

гидрогенератор турбогенератор – на электростанциях;

приборы переменного тока сравнительно небольшой мощности - в системах автономного энергоснабжения (газотурбинная электростанция, дизельная электростанция) и в частотных преобразователях (двигатель-генератор).

В настоящее время выпускается множество типов таких приборов, но все они имеют общее устройство главных элементов:

якорь (статор) – неподвижный;

крутящийся вокруг оси ротор.

В промышленных генераторах больших размеров вращается электромагнит, являющийся ротором. Одновременно с этим обмотки с наводящимися ЭДС, уложенные в пазы статора, остаются неподвижными. В таких устройствах, как маломощный синхронный генератор, магнитное поле создается вращающимся постоянным магнитом.

Существуют следующие виды синхронных генераторов:

Гидро – в нем ротор имеет отличие за счет присутствия явно выраженных полюсов, применяется при производстве электроэнергии, осуществляет работу на малых оборотах.

Турбо – имеет отличия неявнополюсным строением генератора, производится от турбин разного вида, скорость оборотов довольно высокая, достигает порядка 6000 оборотов в минуту.

Компенсатор синхронный – данный агрегат поставляет реактивную мощность, применяется для повышения качества электроэнергии, чтобы стабилизировать напряжение.

Асинхронный агрегат двойного питания – устройство генератора такого типа заключается в том, что в нем подключается как роторная, так и статорная обмотки от поставщика токов с различной частотой. Создается асинхронный график работы. Также он отличается устойчивостью графика работы и тем, что преобразовывает разные токи фаз и используется для решения задач с узкой специализацией.

Двухполюсный ударный агрегат – работает в графике короткого замыкания, воздействует кратковременно, в миллисекундах. Также испытывает аппараты с высоким напряжением.

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).

Безредукторные – для применения в автономных системах. Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.

Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;

Индукторные моторы – для снабжения электроустановок.

Синхронные генераторы бывают однофазные и трехфазные.

рис.3

Из курса электротехники известно, что если вращать ротор-индуктор, то в обмотке статора будет индуктироваться переменная ЭДС (рис.3.а.), Это явление лежит в основе устройства однофазного генератора переменного тока. Обмотку статора можно также сделать много фазной, но на практике наибольшее распространение получила трёхфазная система переменного тока (рис.3.б.).

На тепловозах с передачей мощности переменно-постоянного и переменного тока в качестве тяговых используют синхронные генераторы, первичными двигателями которых служат двигатели внутреннего сгорания (дизели). Их также используют в качестве вспомогательных машин на тепловозах, электровозах и в пассажирских вагонах.

рис.4

Статор является неподвижной частью синхронной машины (рис.4,а) и состоит из корпуса и сердечника, в пазах которого располагается статорная обмотка, предназначенная для индуктирования в ней ЭДС. Сердечник статора набирается из листов электротехнической стали толщиной 0,35 или 0,5 мм, в которых вырубают пазы для укладки проводников обмотки статора.

По роду прибора ротора устройство генератора подразделяется на:

Явнополюсное – с выступающими либо с явно выраженными полюсами (рис.4.б.). Данные роторы применяются в генераторах с тихим ходом, у которых скорость вращения не превышает 1000 оборотов в минуту.

Неявнополюсное – это ротор с формами цилиндра, у которого нет выступающих полюсов (рис.4.в).Они применяются в высокоскоростных синхронных генераторах для обеспечения нужной механической прочности.

Рис.5. Явновыраженные и неявновыраженные полюса электромагнитов. Обмотка возбуждения выполняется из медного провода прямоугольного сечения, концы которой выводятся на контактные кольца, установленные на роторе. Токосъём с контактных колец осуществляется с помощью щёток, установленных в щёткодержателях и прижимаемых к контактной поверхности пружинами.

В синхронных генераторах применяют два основных способа возбуждения: независимое (рис.6.а.) и самовозбуждение (рис.6.б.)

рис.6

При независимом возбуждении обмотка возбуждения питается от генератора постоянного тока с независимой обмоткой возбуждения, расположенного на валу ротора синхронного генератора и вращающегося вместе с ним (большой мощности).

При самовозбуждении питание обмотки возбуждения осуществляется самим синхронным генератором через выпрямитель (малой и средней мощности).

При помощи первичного двигателя ротор-индуктор вращается. Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения ротора равна скорости вращения магнитного поля – отсюда название синхронная машина.



Рис.7. Генераторный режим работы синхронной машины.

При вращении ротора магнитный поток полюсов пересекает статорную обмотку и наводит в ней ЭДС по закону электромагнитной индукции:

E = 4,44*f*w*kw*Ф, где:

f – частота переменного тока, Гц; w – количество витков; kw – обмоточный коэффициент; Ф – магнитный поток.

Частота индуктированной ЭДС (напряжения, тока) синхронного генератора:

f = p*n/60, где:

р – число пар полюсов; п – скорость вращения ротора, об/мин. Заменив: E = 4,44*(п*р/60)*w*kw*Ф и, определив: 4,44*(р/60)*w*kw – относится к конструкции машины и создаёт конструктивный коэффициент: C = 4.44*(р/60)*w*kw.

Тогда: Е = СЕ*п*Ф.

Таким образом, как и у любого генератора, основанного на законе электромагнитной индукции, индуктированная ЭДС пропорциональна магнитному потоку машины и скорости вращения ротора.

Синхронные машины применяются также в качестве электрического двигателя, особенно в установках большой мощности (свыше 50 кВт).

Рис.8. Двигательный режим работы синхронной машины.

Для работы синхронной машины в режиме двигателя обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент М, который увлекает его со скоростью магнитного поля.

Для включения генератора в сеть необходимо :

1.одинаковое чередование фаз в сети и генераторе;

2.равенство напряжения сети и ЭДС генератора;

3.равенство частот ЭДС генератора и напряжения сети;

4.включать генератор в тот момент, когда ЭДС генератора в каждой фазе направлена встречно напряжению сети.

Невыполнение этих условий ведёт к тому, что в момент включения генератора в сеть возникают токи, которые могут оказаться большими и вывести генератор из строя.

Машины переменного тока делятся на асинхронные и синхронные. Статор асинхронной машины создает вращающееся магнитное поле, а ротор вращается с меньшей скоростью, т. е. асинхронно. Увеличение нагрузки двигателя вызывает уменьшение скорости вращения ротора.

В синхронной машине скорость вращения ротора совпадает со скоростью вращения магнитного поля статора и не зависит от нагрузки двигателя.

Все электрические машины обратимы, т. е. могут служить как двигателями, так и генераторами. Асинхронные машины используются главным образом как двигатели, а синхронные — и как двигатели, и как генераторы. Практически все генераторы переменного тока — синхронные.

Асинхронные машины бывают с короткозамкнутым и с фазным ротором.

Недостатком асинхронного двигателя с короткозамкнутым ротором является большой пусковой ток, который превышает номинальный ток в 5-7 раз.

Желая улучшить пусковые характеристики асинхронного двигателя, М. О. Доливо-Добровольский разработал двигатель с фазным ротором.

Асинхронный двигатель с фазным ротором имеет обычный для асинхронных двигателей статор с трехфазной сетевой обмоткой, но на поверхности ротора также находится трехфазная обмотка. Три фазные обмотки ротора соединяются на самом роторе звездой, а свободные их концы соединяются с тремя изолированными друг от друга контактными кольцами, укрепленными на валу машины и изолированными от него (рис. 9). Поэтому асинхронный двигатель с фазным ротором называют также асинхронным двигателем с контактными кольцами. рис.9 Контактные кольца соприкасаются со щетками, установленными в неподвижных щеткодержателях. Через кольца и щетки обмотка ротора замыкается на пусковой трехфазный реостат, который изменяет активное сопротивление обмотки ротора в момент пуска. Обмотка статора такого двигателя включается непосредственно в трехфазную сеть. Эта система используется либо для пуска (для уменьшения пускового тока при одновременном сохранении вращающего момента), либо для регулирования скорости вращения ротора двигателя. После разгона ротора пусковой реостат выключается, и обмотка закорачивается с помощью специального центробежного автоматического замыкателя. Для уменьшения потерь на трение в некоторых двигателях с фазным ротором имеются приспособления для отвода щеток от контактных колец после их замыкания.

Одним из важнейших достоинств асинхронного двигателя с фазным ротором является то, что в момент пуска создается большой вращающий момент при значительно меньших, чем у короткозамкнутых двигателей, пусковых токах. Объясняется это тем, что асинхронный двигатель при пуске развивает максимальный вращающий момент тогда, когда активное сопротивление ротора будет равно индуктивному сопротивлению двигателя. А так как у двигателей с фазным ротором активное сопротивление ротора можно изменять с помощью пускового реостата, то и пусковые характеристики их значительно лучше, чем у двигателей с короткозамкнутым ротором.

Двигатели с фазным ротором предназначены для привода механизмов, эксплуатирующихся в кратковременных и повторно-кратковременных режимах нагрузки. А также в тех случаях, когда работа двигателя связана с частыми пусками и электрическим торможением. Рекомендуется использовать их для привода цементных и угольных мельниц, конвейеров, рубильных машин, крановых, подъёмных и эскалаторных установок. Область использования крановых асинхронных электродвигателей с фазным ротором также распространяется на любые механизмы с длительным режимом работы.

Список литературы

  1. Копытов И.П. Электрические машины – М: Высшая школа. Логос. 2000 г.

  2. Токарев Б.Ф. Электрические машины – М. Энергоатомиздательство. 1990 г.

  3. Гольдберг О.Д. Гурен Я.С. Проектирование электрических машин. Учебник для ВУЗов – 3-е издательсво. М: Высшая школа. 2002 г.


2.Вычислить эквивалентную емкость, напряжение и заряд на каждом конденсаторе, напряжение на батареи конденсаторов.

12 С2

С1 С4

8 16

18 С3 = Дж

1.Общая емкость параллельно соединенных конденсаторов С3 и С2

= 18 + 12 = 30 мкФ

= + + = + +

= 4,5 мкФ



написать администратору сайта