Электроника. Организация эвм и систем однопроцессорные эвм
Скачать 4.17 Mb.
|
1. Общие вопросы истории развития и построения ЭВМС момента своего возникновения человек старался облегчить свой труд с помощью различных приспособлений. В начале это касалось только физического труда, а затем также и умственного. В результате уже в XVII веке начали появляться первые механические устройства, позволяющие выполнять некоторые арифметические действия над числами. Они предназначались, в основном, для коммерческих расчетов и составления навигационных таблиц. Совершенствование технологии обработки металлов, а затем и появление первых электромеханических устройств типа электромагнитных реле привело к интенсивному совершенствованию вычислительных устройств. Кроме того, совершенствование вычислительных устройств было обусловлено все возрастающим объемом информации, требующей переработки. До 30-х годов прошлого столетия разработкой вычислительных устройств занимались механики, математики, электрики. Но с конца 30-х годов к этому процессу подключились электронщики, поскольку вычислительные устройства стали создавать на электронных элементах – электронных лампах. Вычислительные устройства превратились в электронные вычислительные машины (ЭВМ0, а все, что связано было с созданием ЭВМ, превратилось в отдельную область человеческих знаний, которую условно можно было назвать "Теория и принципы проектирования ЭВМ". Однако уже в 50-е годы разнообразие проблем теории и методов проектирования объектов вычислительной техники, сложность ее элементов, устройств, машин и систем закономерно привели к тому, что из дисциплины "Теория и принципы проектирования ЭВМ", еще недавно охватывающей все основные аспекты этой области науки и техники, выделились самостоятельные курсы: схемотехника ЭВМ, методы оптимизации, периферийные устройства, операционные системы, теория программирования и т.д. Современная ЭВМ – настолько сложное устройство, что в одном курсе физически невозможно охватить подробно все проблемы проектирования, создания и эксплуатации ЭВМ, которые в общем случае имеют три аспекта: - пользовательский (т.е. ЭВМ является инструментом решения прикладных задач); - программный (т.е. ЭВМ является объектом системного программирования); - электронный (т.е. ЭВМ является сложным электронным устройством, созданным с использованием сложных технологий). Настоящий курс "Организация ЭВМ и систем" без излишней детализации рассматривает комплекс основных вопросов, относящихся к теории, принципам построения и функционирования ЭВМ как сложного электронного устройства. При этом основное внимание уделяется микроЭВМ и устройствам на базе микропроцессорных комплектов. Следует иметь в виду также, что под ЭВМ понимается любое устройство переработки цифровой информации (от микроконтроллера, управляющего стиральной машиной, до суперЭВМ), а не только персональный компьютер. 1.1. Два класса ЭВМЛюбая сфера человеческой деятельности, любой процесс функционирования технического объекта связаны с передачей и преобразованием информации. Одно из важнейших положений кибернетики состоит в том, что без информации, ее передачи и переработки невозможны организованные системы – ни биологические, ни технические, искусственно созданные человеком. Информацией называются сведения о тех или иных явлениях природы, событиях общественной жизни, процессах в технических устройствах. Информация, зафиксированная в некоторых материальных формах (на материальном носителе), называется сообщением, например: статистические данные о работе предприятия и потребности производства в материалах; данные переписи населения; данные для диспетчера аэропорта о перемещении самолетов в воздухе; данные о толщине прокатываемого листа. Все эти сообщения отличаются друг от друга по источнику информации, по способу представления, по продолжительности и т.д. Но их объединяет одно – информацию, которую они несут, необходимо передать, переработать и как-то использовать. В общем случае сообщения могут быть непрерывными (аналоговыми) и дискретными (цифровыми). Аналоговое сообщение представляется некоторой физической величиной (обычно электрическим током или напряжением), изменение которой во времени отражает протекание рассматриваемого процесса, например температуры в нагревательной печи. Физический процесс, передающий непрерывное сообщение, может в определенном интервале принимать любые значения и изменяться в произвольные моменты времени, т.е. может иметь бесконечное множество состояний. Дискретное сообщение характеризуется конечным набором состояний, например, передача текста. Каждое из этих состояний можно представить в виде конечной последовательности символов или букв, принадлежащих конечному множеству, называемому алфавитом. Такая операция называется кодированием, а последовательность символов – кодом. Число символов, входящих в алфавит, называется основанием кода. Важным здесь является не физическая природа символов кода, а то, что за конечное время можно передать только конечное число состояний сообщения. Причем, чем меньше основание кода, тем длиннее требуются кодовые группы для передачи фиксированного набора состояний сообщения. В настоящее время в абсолютном большинстве случаев используются коды с основанием два, т.е. информация представляется в виде бинарных импульсных последовательностей, или двоичных кодов. Передачу и преобразование любой дискретной информации всегда можно свести к эквивалентной передаче и преобразованию двоичных кодов, или цифровой информации. Более того, возможно с любой заранее заданной степенью точности непрерывное сообщение заменить цифровым путем квантования непрерывного сообщения по уровню и дискретизации его по времени. Однако следует иметь в виду, что с увеличением точности представления аналогового сообщения растет разрядность кода. Это может привести к тому, что обработка аналогового сообщения в цифровой форме на конкретной ЭВМ в реальном масштабе времени окажется невозможной. Таким образом, любое сообщение может быть с определенной степенью точности представлено в цифровой форме. Электронные вычислительные машины (ЭВМ) являются преобразователями информации. В них исходные данные задачи преобразуются в результат ее решения. В соответствии с используемой формой представления информации при преобразовании ЭВМ делятся на два больших класса – аналоговые и дискретного действия – цифровые. Их обозначают как АВМ и ЦВМ соответственно. С 70-х годов термин ЭВМ относят именно к машинам дискретного действия, или ЦВМ, принципы функционирования которых и будут рассмотрены в настоящем курсе. |