Главная страница

Электроника. Организация эвм и систем однопроцессорные эвм


Скачать 4.17 Mb.
НазваниеОрганизация эвм и систем однопроцессорные эвм
АнкорЭлектроника
Дата14.12.2022
Размер4.17 Mb.
Формат файлаdoc
Имя файлаBook_1.doc
ТипКонспект
#845557
страница8 из 18
1   ...   4   5   6   7   8   9   10   11   ...   18

1.7. Малые ЭВМ


Наиболее массовое внедрение ЭВМ в деятельность человека началось тогда, когда в конце 60-х годов удалось построить небольшие, достаточно простые, надежные и дешевые вычислительные устройства, элементной базой которых были микросхемы. Уменьшение объема аппаратуры и стоимости машины было достигнуто за счет укорочения машинного слова (8-16 разрядов вместо 32-64 в машинах общего назначения), уменьшения по сравнению с ЭВМ общего назначения количества типов обрабатываемых данных (в некоторых моделях только целые числа без знака), ограниченного набора команд, сравнительно небольшого объема ОП и небольшого набора ПУ.

Укорочение машинного слова повлекло за собой множество проблем, связанных с представлением данных, адресацией, составом и структурой команд, логической структурой процессора, организацией обмена информацией между устройствами ЭВМ. В процессе эволюции ЭВМ эти проблемы, так или иначе, решались, что привело к созданию малых ЭВМ, структура которых существенно отличалась от структуры больших машин.

Следует отметить, что структуры современных микро - и миниЭВМ весьма сложны и в ряде случаев мало отличаются от структуры мощных ЭВМ – все зависит от мощности используемого процессора, объема и быстродействия ОП, производительности подсистем ввода-вывода и т.д. Однако первые мини - и микроЭВМ, появившиеся в начала 70-х годов, имели весьма простую структуру, радикально отличавшуюся от структуры больших машин того времени.

Типичная структура такой микроЭВМ изображена на рис. 1.4.



Такая структура называется магистрально-модульной. Ее основу составляет общая магистраль (общая шина), к которой подсоединены в нужной номенклатуре и количестве все устройства машины, выполненные в виде конструктивно законченных модулей. Эта структура более простая и гибкая, чем у больших ЭВМ. Устройства машины обмениваются информацией только через общую магистраль.

Такая структура оказывается эффективной, а система обмена данных через общую шину – достаточно динамичной лишь при небольшом наборе ПУ.

Универсальность применения миниЭВМ при ограниченном наборе команд могла быть обеспечена лишь при сравнительно высоком быстродействии процессора – в первых моделях около 200-800 тысяч операций в секунду, что превышало скорость многих ЭВМ общего назначения. Это позволяло малым ЭВМ обслуживать технологические процессы в реальном масштабе времени, а также компенсировать замедление обработки данных, связанное с тем, что малый объем аппаратных средств вынуждал реализовывать многие процедуры обработки программным путем (например, операции арифметики с плавающей запятой).

Подобное решение оказалось настолько эффективным, что и сейчас простейшие контроллеры и микроЭВМ строятся по этой же схеме. Однако структуры сколько-нибудь сложных микро- и миниЭВМ, в частности персональных компьютеров, в процессе эволюции существенно усложнились. Современный персональный компьютер имеет сложную структуру магистралей, иерархию внутренней памяти и множество подсистем ввода-вывода различного быстродействия. Архитектура современного персонального компьютера будет рассмотрена в отдельном разделе.

Вопросы для самопроверки


  1. Укажите, чем АВМ отличается от ЦВМ.

  2. Назовите основные этапы эволюции ЭВМ.

  3. Опишите классическую структуру ЭВМ по Нейману и укажите свойства каждого блока.

  4. В чем заключается принцип оптимального соотношения аппаратных и программных средств при построении вычислительной техники?

  5. Опишите способ обращения пользователя ЭВМ к ее аппаратным средствам.

  6. Что нового появилось в каждом поколении по отношению к предыдущему.

  7. Чем различается принцип построения малых ЭВМ и больших ЭВМ общего пользования?

2. Представление информации в ЭВМ

2.1. Позиционные системы счисления


Под системой счисления понимают способ представления любого числа с помощью некоторого алфавита символов, называемых цифрами. Существуют различные системы счисления. От их особенностей зависят наглядность представления числа при помощи цифр и сложность выполнения арифметических операций.

В ЭВМ используются только позиционные системы счисления с различными основаниями. Позиционные системы счисления характеризуются тем, что одна и та же цифра имеет различное значение, определяющееся позицией цифры в последовательности цифр, изображающих число.
Пример.:

  • Десятичная система счисления – позиционная,

  • Римская система счисления – непозиционная.

Количество S различных цифр, употребляющихся в позиционной системе счисления, называется ее основанием. В общем случае, любое число в позиционной системе счисления можно представить в виде полинома от основания S:

.

В качестве коэффициента  могут стоять любые из S цифр, используемых в системе счисления. Однако для краткости число принято изображать в виде последовательности цифр.



Позиции цифры, отсчитанные от запятой (точки), отделяющей целую часть от дробной, называются разрядами. В позиционной системе счисления вес каждого разряда больше соседнего в число раз, равное основанию системы S.
Пример.

Для десятичной системы счисления (основание S = 10) имеем число 6321.564. Веса разряда и коэффициенты  для этого числа будут следующими:


Веса

103

102

101

100

10-1

10-2

10-3



6

3

2

1

5

6

4


В ЭВМ применяют двоичную, восьмеричную и шестнадцатеричную системы счисления. В дальнейшем систему счисления, в которой записано число, будем обозначать подстрочным индексом, заключенным в круглые скобки. Например: 1101(2), 369(10), BF(16) и т.д.
1   ...   4   5   6   7   8   9   10   11   ...   18


написать администратору сайта