Главная страница

Основные понятия в химии


Скачать 91.43 Kb.
НазваниеОсновные понятия в химии
Дата28.01.2019
Размер91.43 Kb.
Формат файлаdocx
Имя файла.archivetempgotovaya_shpora.docx
ТипДокументы
#65525
страница6 из 7
1   2   3   4   5   6   7
Молекулярность и порядок реакции.

Все реакции можно подразделить на простые и сложные. Простые реакции протекают в одну стадию и называется одностадийными. Сложные реакции идут либо последовательно (многостадийные реакции), либо параллельно, либо последовательно-параллельно. В свою очередь, в каждой стадии реакции может участвовать одна молекула (мономолекулярные реакции), две молекулы (бимолекулярные) и три молекулы (тримолекулярные). Число молекул реагента, принимающих участие в простейшей (элементарной) стадии, называется её молекулярностью.

Порядок реакции - это сумма порядков реакции по реагентам.

Порядок реакции определяется суммой величин показателей степени при значениях концентраций исходных веществ в кинетическом уравнении:

а) V1 = K1[H2O2] ; б) V2 = K2[O2].

Поэтому обе реакции первого порядка.

Молекулярность реакции определяется числом молекул, одновременным взаимодействием которых осуществляется акт химического взаимодействия. Реакция а) одномолекулярная, б) двухмолекулярная.

Выражение для определения скорости реакции первого порядка

.

Скорость реакции второго порядка для двух реагентов В и D подчиняется кинетическому уравнению

V = K·CB·CD,

где СВ – концентрация реагента В, а СD – концентрация реагента D.

Наиболее часто встречаются реакции первого и второго порядка. Реакции третьего порядка крайне редки. Реакции более высокого порядка, чем третий, неизвестны, так как в большинстве случаев реакции многостадийны.

37. Правило Вант-Гоффа. V2 = V1⋅γΔT/ 10

Повышение температуры ускоряет большинство реакций. Согласно правилу Вант-Гоффа при увеличении температуры на 10 К скорость многих реакций увеличивается в 2-4 раза V2 = V1⋅γΔT/ 10

Где V2 и V1 – скорость реакции при температурах Т2 и Т1 , γ – коэффициент, значение которого для эндотермической реакции выше, чем для экзотермической реакции. Для многих реакций γ лежит в пределах 2- 4.

38. Уравнение Аррениуса. Энергия активации.

Уравнение Аррениуса. K = K0e(-Ea/RT), K – константа скорости реакции, K0 – предэкспотенциальный множитель, e – это e. Ea – энергия активации.

Если при изменении температуры, концентрация реагентов остаётся постоянной то:

V = V0exp[-Ea/(RT)]

Ea/(2,3RT)=Δlgk/Δ(1/T)

Энергия активации. Энергия необходимая для перехода вещества в состояние активированного комплекса.

39. Растворы, идеальные, реальные, истинные, коллоидные.

Идеальным раствором называют раствор, в котором не происходит химической реакции между компонентами, а силы межмолекулярного взаимодействия между компонентами одинаковы.

……………………………………………………………………

40. Определение концентрации растворов.

Концентрация. Отношение количества или массы вещества, содержащегося в системе, к объему или массе этой системы.

Молярная концентрация вещества. В, cв - отношение кол-ва вещества(в молях) содержащегося в системе к объему этой системы. Единица измерения моль/м3 или моль/л.

Молярная доля вещества. В, xв – отношение кол-ва вещества данного компонента (в молях), содержащегося в системе, к общему количеству вещества(в молях)Измеряется в %.

Объемная доля вещества. В, ϕв – отношение объема компонента, содержащегося в системе, к объёму системы.

Массовая доля вещества. В, ωв - отношение массы данного компонента, содержащегося в системе, к общей массе этой системы.

Предельно допустимая концентрация(ПДК).
41. Активность. Ионная сила раствора.

Активность.
a=
γс γ - коэффициент активности.

………………………………………………….

42. Закон Рауля, следствия из закона Рауля.

Закон Рауля. Температура кипения раствора выше температуры кипения растворителя.

ΔTкип=KэCm

Температура кристализации раствора ниже температуры кристализации чистого растворителя.

ΔTзам=KкCm

43. Осмос – переход растворителя через полупроницаемую мембрану в более концентрированный раствор. Этот процесс модно остановить, если к раствору приложить некоторое давление, которое называют осмотическим. Осмотическое давление П разбавленных растворов описывается уравнением Вант-Гоффа:

П = CRT, где С- молярная концентрация раствора, R – газовая постоянная, Т – абсолютная температура.

Измеряя осмотическое давление, можно определить молярную массу растворенного вещества. Этот метод обычно используют для белков.

44. Растворимость, произведение растворимости, условие выпадения осадка.

Раствор – однородная система переменного состава, содержащая два или большее число веществ. Вещество, взятое в избытке и в том же агрегатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке, - растворенным веществом.

Растворимость веществ зависит от природы и агрегатного состояния растворителя и растворенного вещества, а также от температуры и давления.

раствор в котором устанавливается равновесие между растворением и образованием (осаждением) вещества называется насыщенным, а концентрация такого раствора – растворимостью Ср.

произведение растворимости – константа диссоциации малорастворимых веществ в насыщенном растворе. Для вещества, диссоциирующего по уравнению АmBn(ТВ)↔mAn+ + nBm-, произведение растворимости имеет вид ПР(АmBn) = [An+]m * [Bm-]n .

Если произведение концентраций ионов в растворе превышает ПР, то из раствора выпадает осадок. Если это произведение меньше ПР, то осадок не выпадает.

45. Диссоциация. Степень диссоциации. Константа диссоциации. Сильные, слабые электролиты.

Электролитическая диссоциация – распад некоторых веществ на ионы в растворе под действием молекул растворителя или в расплаве. Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Теория Электролитической диссоциации:

  1. при растворении в воде электролиты распадаются на положительные ионы (катионы) и отрицательные ионы (анионы). ионы в растворе взаимодействуют с молекулами воды (гидратация). Процесс диссоциации является обратимым.

  2. под действием постоянного электрического тока катионы движутся по катоду, анионы – к аноду.

  3. степень диссоциации зависит от природы электролита и растворителя, концентрации электролита и температуры.

Степень диссоциации (а) – отношение числа молекул, распавшихся на ионы (N’) к общему числу растворенных молекул (N): а = N’/ N;

Сильный электролит – вещество, степень диссоциации которого больше 30%.. к сильным электролитам относят все соли , сильные кислоты, сильные основания.

Слабый электролит – вещество, степень диссоциации которого меньше 3%. к слабым электролитам относят слабые кислоты, слабые основания.

степень диссоциации зависит от концентрации вещества в растворе, поэтому некоторые слабые электролиты при разбавлении могут стать сильными.

константа диссоциации – константа равновесия электролитической диссоциации. она равна отношению произведений концентраций ионов, образующихся при диссоциации, к концентрации исходных частиц.

46. Ионное произведение воды, водородный показатель, кислотно-основные индикаторы.

Тщательно очищенная от посторонних примесей вода обладает определённой, хотя и незначительной, электрической проводимостью, заметно возрастающей с повышением температуры. Наличие электрической проводимости может быть объяснено только тем, что молекулы воды, частично распадаются на ионы, т.е. H2O является слабым электролитом. Процесс диссоциации воды может быть записан

H2O + H2O ↔ H3O+ + OH¯. Этот процесс называется самоионизацией. Реакцию воды часто записывают в более простом виде:H2O ↔ H+ + OH¯. Константа диссоциации воды может быть вычислена по уравнению

Кд = (aH aOH)/aH2O (1). Учитывая, что при комнатной температуре на ионы распадается лишь одна из примерно 108 молекул воды, активности ионов в уравнении могут быть заменены их концентрациями , а концентрацию нераспавшихся молекул воды можно считать равной общей концентрации молекул воды. Концентрацию молекул можно рассчитать, разделив массу 1 л воды на массу её моля: 1000/18 = 55,5 моль/л. Считая эту величину постоянной, можно уравнение (1) записать в виде: [H+] [OH¯] = Кд 55,5 = Кв, где Кв – ионное произведение воды. При расчётах связанных с водными растворами электролитов, используют не концентрации, активности ионов: aH·aOH = Кв.

Водородным показателем, или pH, называется взятый с обратным знаком десятичный логарифм активности ионов водорода в растворе: pH = - lg aH. Водородный показатель определяет характер реакции раствора. При pH<7 реакция раствора кислая, при pH>7 – щелочная, при pH=7 – реакция нейтральная. Водородный показатель имеет важное значение для понимания большинства процессов, протекающих в жидкой фазе, так как ионы H+ и OH¯ непосредственно участвуют во многих из этих процессов. Кроме того, эти ионы являются гомогенными катализаторами многих реакций. Величина pH может служить критерием силы кислоты или основания. Водородный показатель играет важную роль в жизнедеятельности организма, так в норме pH сыворотки крови равен 7,40 ± 0,05, слёз – 7,4 ± 0,1. отклонение pH от нормальных значений приводит к расстройству деятельности организма. Существенно влияние на урожайность оказывает pH почвы, на экологию водоёма – pH воды.

47. Теории кислот и оснований: электролитическая, протонная, электронная.

………………………………..

48. Гидролиз солей. Рассмотреть на примерах. Степень гидролиза. Константа гидролиза.

1   2   3   4   5   6   7


написать администратору сайта