Главная страница
Навигация по странице:

  • Особенности функционирования первых ЭВМ

  • Особенности функционирования первых ЭВМ. Реферат. Особенности функционирования первых эвм


    Скачать 39.81 Kb.
    НазваниеОсобенности функционирования первых эвм
    АнкорОсобенности функционирования первых ЭВМ
    Дата15.05.2022
    Размер39.81 Kb.
    Формат файлаdocx
    Имя файлаРеферат.docx
    ТипРеферат
    #530641

    Частное профессиональное образовательное учреждение

    «Русско-Азиатский экономико-правовой колледж»
    Специальность 40.02.01 – Право и организация социального обеспечения


    РЕФЕРАТ

    по дисциплине: Информатика

    На тему: Особенности функционирования первых ЭВМ

    Выполнил: студент 3 курса

    гр. КЮЗ-19-03

    Горбунов С.В.

    Проверил: _____________

    ______________________

    Иркутск-2021

    СОДЕРЖАНИЕ

    ВВЕДЕНИЕ………………………………………………………………......

    3

    1. Понятие ЭВМ………………………………………………………….

    4

    2. Особенности функционирования первых ЭВМ …………………….

    5

    ЗАКЛЮЧЕНИЕ………………………………………………………………

    11

    СПИСОК ЛИТЕРАТУРЫ…………………………………………………...

    12








    ВВЕДЕНИЕ

    Около пятидесяти лет прошло с тех пор, как появилась первая электронная вычислительная машина (ЭВМ). За этот относительно небольшой для общественного прогресса промежуток времени поменялось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью.

    История совершенствования вычислительной техники весьма интересна, так как демонстрирует плотную взаимную связь математики и физики с современными технологическими новшествами, степень совершенства которых предопределяет развитие выпуска вычислительных устройств.

    Электронные вычислительные машины прошли в своём развитии несколько этапов. Для компьютерных устройств свойственна частая смена поколений, за столь небольшое по историческим меркам время их сменилось уже четыре, и сегодня в эксплуатации находится пятое поколение компьютеров. Главными отличительными признаками каждого поколения является его элементная база и важнейшие рабочие характеристики. Но при этом всё равно разделение компьютеров на поколения несколько условное. Есть отдельные компьютерные модели, которые по разным признакам можно отнести к разным поколениям. И, тем не менее, несмотря на эту условность, каждое новое поколение электронных вычислительных машин являлось качественным скачком в прогрессе этой сферы.


    1. Понятие ЭВМ

    Электронная вычислительная машина, ЭВМ – комплекс технических средств, где основные функциональные элементы (логические, запоминающие, индикационные и др.) выполнены на электронных элементах, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

    ЭВМ используется как один из способов реализации компьютера. В настоящее время термин ЭВМ, как относящийся больше к вопросам конкретной физической реализации компьютера, почти вытеснен из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле – для обозначения компьютерной техники 1940-1980-х годов и больших вычислительных устройств, в отличие от персональных.

    Электронная вычислительная машина подразумевает использование электронных компонентов в качестве её функциональных узлов, однако компьютер может быть устроен и на других принципах – он может быть механическим, биологическим, оптическим, квантовым и т.п., работая за счёт перемещения механических частей, движения электронов, фотонов или эффектов других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть цифровой (ЦВМ) и аналоговой (АВМ).


    1. Особенности функционирования первых ЭВМ

    В первом поколении ЭВМ, которое относится к периоду с 1944-го по 1954 год, в качестве основных компонентов использовались электронные лампы.

    Электронной лампой является устройство, которое работает на принципе колебаний интенсивности электронного потока, перемещающегося в вакуумном пространстве стеклянной колбы по направлению от катода к аноду. Образование потока электронов осуществляется посредством термоэлектронной эмиссии, то есть выброса электронов с металлических поверхностей при их нагревании. С нагревом металла растёт энергия электронов и многие из них выходят за потенциальный барьер на границе металлической поверхности. Когда на лампу поступает входной сигнал, к примеру, логическая единица в виде напряжения, величиной два вольта, то выходным сигналом лампы будет или логический ноль в виде напряжения менее вольта, или логическая единица. Логическая единица будет в случае, когда напряжение на управляющем электроде лампы, сетке, равно нулю и ток без всяких препятствий проходит от катода к аноду. Когда же на сетку лампы подаётся напряжение с отрицательным потенциалом, то оно препятствует движению электронов от катода к аноду, и, в итоге, не будет тока, то есть на выходе появится уровень логического нуля. На этом принципе действия построена вся логика ламповых компьютеров. Использование электронных ламп существенно повысило уровень вычислительных возможностей ЭВМ и ознаменовало переход от использования реле в вычислительной технике к лампам, на которых и строилось первое поколение ЭВМ.

    Применение электронных ламп тормозила их не высокая надёжность, значительное потребление энергии и немалые размеры. Конструкция первых ЭВМ обладала просто огромными размерами и могла занимать больше одного помещения в научных учреждениях. Обслуживать такую технику было очень непросто, лампы всё время ломались, вызывая сбои ввода информации, появлялось большое количество разных проблем. Также очень большими и дорогими были блоки питания ламповых ЭВМ, требовалось проложить силовые кабеля, питающие ЭВМ, и выполнять сложную разводку кабелей к каждому элементу. Ещё необходимо было обеспечить хорошее охлаждение ламповых блоков, так как они сильно нагревались и лампы часто не работали из-за перегрева. Невзирая на эти сложности, электронные вычислительные машины получили широкое развитие, их быстродействие росло и достигало уровня тысяч операций в секунду. Оперативная память вмещала примерно две тысячи машинных команд. ЭВМ первого поколения управляющую программу сохраняла в памяти, при этом применялась обработка машинных слов в параллельном режиме. Проектируемые ЭВМ того времени, как правило, были универсального назначения и применялись для работы в научно-технических целях. Затем выпуск ЭВМ пошёл в серию, и они начали применяться и в сфере бизнеса и коммерции.

    Машины этого поколения: ENIAC (США), МЭСМ (СССР), БЭСМ-1, М-1, М-2, М-З, «Стрела», «Минск-1», «Урал-1», «Урал-2», «Урал-3», M-20, «Сетунь», БЭСМ-2, «Раздан», IBM – 701.

    В конце пятидесятых – начале шестидесятых годов прошлого века на смену электронной лампе в вычислительных машинах и системах второго поколения пришел компактный и экономичный прибор – транзистор. В качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны – далекие предки современных жестких дисков. Компьютеры стали более надежными, быстродействие их повысилось, потребление энергии уменьшилось, уменьшились габаритные размеры машин.

    С появлением памяти на магнитных сердечниках цикл ее работы уменьшился до десятков микросекунд. Главный принцип структуры - централизация. Появились высокопроизводительные устройства для работы с магнитными лентами, устройства памяти на магнитных дисках. Кроме этого, появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня – Фортран, Алгол, Кобол.

    Примеры машин второго поколения: БЭСМ-6, БЭСМ-4, Минск-22 - предназначены для решения научно-технических и планово-экономических задач; Минск-32 (СССР), ЭВМ М-40, - 50 - для систем противоракетной обороны; Урал - 11, - 14, - 16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических задач.

    Прошло всего 7-8 лет, и это поколение буквально вытолкнули машины следующего, третьего поколения.

    В ЭВМ третьего поколения (1968-1973 гг.) использовались интегральные схемы. Разработка в 60-х годах интегральных схем – целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ.

    Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной.

    Компьютеры проектировались на основе интегральных схем малой степени интеграции (МИС - 10-100 компонентов на кристалл) и средней степени интеграции (СИС - 10-1000 компонентов на кристалл). Появилась идея, которая и была реализована, проектирования семейства компьютеров с одной и той же архитектурой, в основу которой положено главным образом программное обеспечение. В конце 60-х появились мини-компьютеры. В 1971 году появился первый микропроцессор.

    В эти годы производство компьютеров приобретает промышленный размах. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Странами СЭВ были выпущены ЭВМ единой серии «ЕС ЭВМ»: ЕС-1022, ЕС-1030, ЕС-1033, ЕС-1046, ЕС-1061, ЕС-1066 и др. К ЭВМ этого поколения также относится «IВМ-370», «Электроника-100/25», «Электроника-79», «СМ-3», «СМ-4» и др.

    Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). В 1969 году одновременно появились операционная система Unix и язык программирования С («Си»), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

    В компьютерах четвертого поколения (1974-1982 гг.), использование больших интегральных схем (БИС - 1000-100000 компонентов на кристалл) и сверхбольших интегральных схем (СБИС - 100000-10000000 компонентов на кристалл) увеличило их быстродействие.

    Началом данного поколения считают 1975 год – фирма Amdahl Corp. выпустила шесть компьютеров AMDAHL 470 V/6, в которых были применены БИС в качестве элементной базы. Стали использоваться быстродействующие системы памяти на интегральных схемах – МОП ЗУПВ емкостью в несколько мегабайт. В случае выключения машины данные, содержащиеся в МОП ЗУПВ, сохраняются путем автоматического переноса на диск. При включении машины запуск системы осуществляется при помощи хранимой в ПЗУ (постоянное запоминающее устройство) программы самозагрузки, обеспечивающей выгрузку операционной системы и резидентного программного обеспечения в МОП ЗУПВ.

    Развитие ЭВМ 4-го поколения пошло по 2 направлениям: 1-ое направление – создание супер ЭВМ – комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др.

    2-ое направление – дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются компьютеры фирмы Apple, IBM - PC (XT, AT, PS /2), отечественные «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др. Начиная с этого поколения ЭВМ стали называть компьютерами. Программное обеспечение дополняется базами и банками.

    ЭВМ пятого поколения – это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки – задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на «почти естественном» языке, что от них требуется.

    Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

    Для ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров – устранения барьера между человеком и компьютером.

    К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.

    Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

    Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.
    ЗАКЛЮЧЕНИЕ

    Завершая работу над рефератом можно прийти к выводу, что первые ЭВМ – это первые версии технического, аппаратного и программного обеспечения, которое предназначалось для производства вычислений.

    Под электронной вычислительной машиной понимается набор технических модулей, в котором главные рабочие компоненты собраны на элементах электроники и который предназначен для автоматической работы с данными при решении разных задач по вычислениям и обработке информации.

    Различают ЭВМ профессиональные и персональные. Существование различных типов определяется задачами, для которых они предназначены. Профессиональные ЭВМ используют в конкретной профессиональной сфере. За время истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. В короткий срок сфера применения ЭВМ (первоначально для расчетов), существенно расширилась и охватила почти все области науки, техники и управления технологическими процессами, все сферы человеческой деятельности, связанные с обработкой больших объемов информации.

    Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить.

    Таким образом, универсальность ЭВМ, её способность к целенаправленной переработке различных видов информации и объясняют происходящий сейчас стремительный процесс внедрения ЭВМ в самые разные сферы деятельности человека в современном обществе.


    СПИСОК ЛИТЕРАТУРЫ

    1. Акулов О. А., Медведьев Н. В. Информатика: базовый курс. – М.: Омега-Л, 2019. – 234 с.

    2. Гасумова С. Е. Социальная информатика. Учебник и практикум для вузов. – М.: Юрайт, 2019. – 284 с.

    3. Лесничая И. Г. Информатика и информационные технологии. Учебное пособие. – М.: Издательство Эксмо, 2016. – 132 с.

    4. Набиуллина С. Н. Информатика и ИКТ. Курс лекций. – М.: Лань, 2019. – 72 с.

    5. Попов В. Б. Основы компьютерных технологий. – М. : Финансы и статистика, 2020. – 342 с.

    6. Попова О. В. Информатика Учебное пособие / О. В. Попова. – Красноярск: Красноярский институт экономики Санкт-Петербургской академии управления и экономики (НОУ ВПО), 2015. – 186 с.

    7. Роганов Е. А. Практическая информатика / Е.А.Роганов. – М.: МГИУ, 2018. – 364 с.

    8. Семененко В. А. и др. Электронные вычислительные машины. – М.: Высш. шк., 1999. – 288 с.

    9. Украинцев Ю. Д. История связи и перспективы развития телекоммуникаций: учебное пособие / Ю.Д.Украинцев, М.А.Цветов. – Ульяновск : УлГТУ, 2014. – 128 с.

    10. Фефелов Н. П. Информатика. Учебное пособие / Н.П.Фефелов. – Томск: Томский межвузовский центр дистанционного образования, 2017. – 252 с.

    11. Хлебников А. А. Информатика. Учебник. – М.: Феникс, 2017. – 448 с.

    12. Юсупов Р. М. Состояние и перспективы развития информатики [Электронный ресурс]; Журнал «Труды СПИИРАН», №5, 2019; Изд. «Санкт-Петербургский институт информатики и автоматизации РАН» – С. 46-50.


    написать администратору сайта