Разработка сценариев с помощью специализированных языков. Особенности объектноориентированных и структурных языков программирования
Скачать 20.01 Kb.
|
Особенности объектно-ориентированных и структурных языков программирования Существует три основных парадигмы: структурное, объектно-ориентированное и функциональное. Интересно, что сначала было открыто функциональное, потом объектно-ориентированное, и только потом структурное программирование, но применяться повсеместно на практике они стали в обратном порядке. Структурное программирование было открыто Дейкстрой в 1968 году. Он понял, что goto – это зло, и программы должны строиться из трёх базовых структур: последовательности, ветвления и цикла. Объектно-ориентированное программирование было открыто в 1966 году. Функциональное программирование открыто в 1936 году, когда Чёрч придумал лямбда-исчисление. Первый функциональный язык LISP был создан в 1958 году Джоном МакКарти. Каждая из этих парадигм убирает возможности у программиста, а не добавляет. Они говорят нам скорее, что нам не нужно делать, чем то, что нам нужно делать. Все эти парадигмы очень связаны с архитектурой. Полиморфизм в ООП нужен, чтобы наладить связь через границы модулей. Функциональное программирование диктует нам, где хранить данные и как к ним доступаться. Структурное программирование помогает в реализации алгоритмов внутри модулей. Структурное программирование Дейкстра (один из разработчиков концепции структурного программирования) понял, что программирование – это сложно. Большие программы имеют слишком большую сложность, которую человеческий мозг не способен контролировать. Чтобы решить эту проблему, Дейсктра решил сделать написание программ подобно математическим доказательствам, которые также организованы в иерархии. Он понял, что если в программах использовать только if, do, while, то тогда такие программы можно легко рекурсивно разделять на более мелкие единицы, которые в свою очередь уже легко доказуемы. С тех пор оператора goto не стало практически ни в одном языке программирования. Таким образом, структурное программирование позволяет делать функциональную декомпозицию. Однако на практике мало кто реально применял аналогию с теоремами для доказательства корректности программ, потому что это слишком накладно. В реальном программировании стал популярным более «лёгкий» вариант: тесты. Тесты не могут доказать корректности программ, но могут доказать их некорректность. Однако на практике, если использовать достаточно большое количество тестов, этого может быть вполне достаточно. Объектно-ориентированное программирование ООП – это парадигма, которая характеризуется наличием инкапсуляции, наследования и полиморфизма. Инкапсуляция позволяет открыть только ту часть функций и данных, которая нужна для внешних пользователей, а остальное спрятать внутри класса. Однако в современных языках инкапсуляция, наоборот, слабее, чем была даже в C. В Java, например, вообще нельзя разделить объявление класса и его определение. Поэтому сказать, что современные объектно-ориентированные языки предоставляют инкапсуляцию можно с очень большой натяжкой. Наследование позволяет делать производные структуры на основе базовых, тем самым давая возможность осуществлять повторное использование этих структур. Наследование было реально сделать в языках до ООП, но в объектно-ориентированных языках оно стало значительно удобнее. Наконец, полиморфизм позволяет программировать на основе интерфейсов, у которых могут быть множество реализаций. Полиморфизм осуществляется в ОО-языках путём использования виртуальных методов, что является очень удобным и безопасным. Полиморфизм – это ключевое свойство ООП для построения грамотной архитектуры. Он позволяет сделать модуль независимым от конкретной реализации (реализаций) интерфейса. Этот принцип называется инверсией зависимостей, на котором основаны все плагинные системы. Инверсия зависимостей так называется, что она позволяет изменить направление зависимостей. Сначала мы начинаем писать в простом стиле, когда высокоуровневые функции зависят от низкоуровневых. Однако, когда программа начинает становиться слишком сложной, мы инвертируем эти зависимости в противоположную сторону: высокоуровневые функции теперь зависят не от конкретных реализаций, а от интерфейсов, а реализации теперь лежат в своих модулях. Любая зависимость всегда может быть инвертирована. В этом и есть мощь ООП. Таким образом, между различными компонентами становится меньше точек соприкосновения, и их легче разрабатывать. Мы даже можем не перекомпилировать базовые модули, потому что мы меняем только свой компонент. Функциональное программирование В основе функционального программирования лежит запрет на изменение переменных. Если переменная однажды проинициализирована, её значение так и остаётся неизменным. Какой профит это имеет для архитектуры? Неизменяемые данные исключают гонки, дедлоки и прочие проблемы конкурентных программ. Однако это может потребовать больших ресурсов процессора и памяти. Применяя функциональный подход, мы разделяем компоненты на изменяемые и неизменяемые. Причём как можно больше функциональности нужно положить именно в неизменяемые компоненты и как можно меньше в изменяемые. В изменяемых же компонентах приходится работать с изменяемыми данными, которые можно защитить с помощью транзакционной памяти. Интересным подходом для уменьшения изменяемых данных является Event Sourcing. В нём мы храним не сами данные, а историю событий, которые привели к изменениям этих данных. Так как в лог событий можно только дописывать, это означает, что все старые события уже нельзя изменить. Чтобы получить текущее состояние данных, нужно просто воспроизвести весь лог. Для оптимизации можно использовать снапшоты, которые делаются, допустим, раз в день. |