Главная страница
Навигация по странице:

  • Центробежные пылеосадители

  • Трубчатые электрофильтры

  • Отчет по производственной практике по получению профессиональных умений и опыта профессиональной деятельности


    Скачать 284.31 Kb.
    НазваниеОтчет по производственной практике по получению профессиональных умений и опыта профессиональной деятельности
    Дата14.09.2022
    Размер284.31 Kb.
    Формат файлаdocx
    Имя файлаotchet_18_06-15_07 2.docx
    ТипОтчет
    #676768
    страница3 из 3
    1   2   3

    Пылеосадительные камеры

    Осаждение взвешенных в газовом потоке частиц в пылеоса-дительных камерах происходит под действием сил тяжести. Простейшими конструкциями аппаратов этого типа являются отстойные газоходы, снабжаемые иногда вертикальными перегородками для лучшего осаждения твердых частиц.

    Для очистки горячих печных газов широко применяют многополочные пылеосадительные камеры. Эти камеры громоздки и мало эффективны; их используют преимущественно для предварительной грубой очистки газов и заменяют более совершенными газоочистительными аппаратами.

    пылеосадительная камера

      1. Центробежные пылеосадители

    В центробежных пылеосадителях (циклонах) осаждение взвешенных в газовом потоке частиц происходит в поле центробежных сил.

    Поступающий на очистку газ подводится к центробежному пылеосадителю по трубопроводу, направленному по касательной к цилиндрической части аппарата. В результате газ вращается внутри циклона вокруг выхлопной трубы. Под действием центробежной силы, возникающей при вращательном движении газа, твердые частицы большей массой отбрасываются от центра переферии, осаждаются на стенке, а затем через коническую часть удаляются из аппарата. Очищенный газ через выхлопную трубу поступает в производство или выбрасывается в атмосферу.

    С уменьшением радиуса циклона значительно увеличиваются центробежная сила и скорость осаждения частиц. На основе этой зависимости созданы конструкции батарейных циклонов, более эффективных, чем обычные циклоны. Батарейные циклоны состоят из параллельно включенных элементов малого диаметра (150-- 250 мм). Их применяют в широком диапазоне изменения температур очищаемого газа (до 400° С) при относительно небольшой концентрации взвешенных в нем твердых частиц. Батарейные циклоны имеют прямоугольный корпус и состоят из одной или нескольких секций.

    Общие недостатки центробежных пылеосадителей - недостаточная очистка газа от тонкодисперсной пыли, высокое гидравлическое сопротивление, а следовательно, и большой расход энергии на очистку газа, быстрое истирание стенок пылью, а также чувствительность аппаратов к колебаниям нагрузки.

    батарейный циклон



    1- корпус; 2,3 -решетки; 4-патрубок для ввода запыленного газа; 5- элементы ; 6 - патрубок для вывода очищенного газа; 7 -конусное днище

    Гидравлические пылеуловители мокрую очистку газов производят в гидравлических пылеуловителях: скрубберах (насадочных, центробежных, струйных) и механических газопромывателях со смоченными поверхностями.

    Из новых конструкций представляют интерес шаровые пылеуловители, обладающие рядом преимуществ по сравнению с распространенными типами механических газопромывателей со смоченными поверхностями. Аппараты шаровидной формы наименее металлоемки. В таких аппаратах обеспечивается хорошее распределение газа по рабочему сечению и уменьшенные потери давления газа; шаровидная форма позволяет удачно расположить основные рабочие элементы.

    Газовый поток, содержащий мелкодисперсные твердые частицы, поступает через штуцер 1 в пылеуловитель и под действием отбойного щитка 2 меняет направление движения при одновременном снижении скорости. В результате наиболее крупные твердые частицы, содержащиеся в газовом потоке, опускаются и попадают в масло, которым заполнена нижняя часть пылеуловителя.

    Частично очищенный таким образом газ равномерно распределяется по свободному сечению аппарата и поступает в проволочный лабиринт вращающегося на валу 3 ситчатого диска 4. Последний вращается электродвигателем 5 через редуктор 6. Сильно развитая и смоченная маслом поверхность диска 4 задерживает все содержащиеся в газе мелкодисперсные твердые частицы. Удаление твердых частиц с поверхности ситчатого диска, а также смачивание ее маслом происходят при вращении диска. Как видно из схемы, часть поверхности диска, проходя через ванну 7, увлекает своей пористой поверхностью масло. Верхняя часть диска орошается маслом из укрепленных по периметру диска ковшей 8, которые при вращении наполняются маслом в ванне 7. Пройдя диск 4, газ поступает в капле-уловитель 9. Равномерное распределение газа по сечению капле-уловителя обеспечивается отрегулированным отбойником 10.

    В каплеуловителе из газа удаляются капельная влага и конденсат, поступившие в пылеуловитель из газопровода, а также капли масла, незначительное количество которых может образовываться при разрыве пузырей масла на выходной стороне диска 4.

    Осажденные в каплеуловителе 9 влага, конденсат и масло стекают в ванну 7, а очищенный газ через штуцер 11 выходит из пылеуловителя.

    Все твердые частицы, которые поступают в процессе очистки газа в полость ванны 7, попадакп в нижнюю часть грязевика 14, откуда периодически отводятся через штуцер 13 вместе с грязным маслом. Уровень масла в ванне 7 поддерживается постоянным подводом чистого масла через штуцер 12.

    Шаровой пылеуловитель состоит из сборных и взаимозаменяемых элементов, позволяющих в процессе его эксплуатации регулировать и заменять отдельные элементы.

      1. Гидравлический пылеуловитель

    Электрофильтры в электрофильтрах происходит ионизация молекул газового потока, проходящего между двумя электродами, к которым подведен постоянный электрический ток.

    Основные элементы электрофильтра-коронирующие и осадительные электроды. Отрицательное напряжение обычно подводят к коронирующему электроду, а положительное - к осадительному. Поэтому к осадительным электродам под действием разности потенциалов движутся только отрицательные ионы и свободные электроны. Последние на своем пути сталкиваются со взвешенными в газовом потоке мелкими твердыми или жидкими частицами, передают им отрицательные заряды и увлекают к осадительным электродам. Подойдя к осадительному электроду, частицы пыли или тумана оседают на нем, разряжаются и при встряхивании отрываются от электрода под действием собственной силы тяжести.

    Для предотвращения искрового разряда между электродами (короткого замыкания) в электрофильтрах создают неоднородное электрическое поле, напряжение которого уменьшается по мере удаления от коронирующего электрода. Неоднородность поля достигается установкой электродов определенной формы.

    В зависимости от формы осадительного электрода различают электрофильтры трубчатые и пластинчатые.

      1. Трубчатые электрофильтры

    Трубчатые электрофильтры представляют собой камеры, в которых установлены осадительные электроды в виде круглых или шестигранных труб. Коронирующими электродами служат отрезки проволоки, натянутые по оси труб. Сверху электроды прикреплены к раме, подвешенной на изоляторах, снизу связаны общей рамой для предотвращения колебаний. Равномерное распределение газа по трубам обеспечивается установкой газораспределительной решетки.

    В пластинчатых электрофильтрах осадительными электродами служат параллельные гладкие металлические листы или натянутые на рамы сетки; между ними подвешены коронирующие электроды, выполненные из отрезков проволоки.

    Преимущества трубчатых электрофильтров по сравнению с пластинчатыми - создание более эффективного электрического поля и лучшее распределение газа по элементам. Последнее позволяет улучшить очистку или увеличить скорость прохождения газа и производительность аппарата.

      1. Пластинчатый/электрофильтр

    1-коронирующие электроды; 2-пластинчатые осадительные электроды; a - входной газоход; б -выходной газоход; в- камера.

    К недостаткам трубчатых электрофильтров следует отнести: сложность монтажа, трудность встряхивания корояиру-ющих электродов без нарушения строгого центрирования, а также большой расход энергии на единицу длины электрических проводов.

    Преимущества пластинчатых электрофильтров- простота монтажа и удобство встряхивания электродов.

    Для очистки сухих газов применяют преимущественно пластинчатые электрофильтры, а для очистки трудноулавливаемой пыли, капель жидкости из туманов (не требующих встряхивания электродов) и для обеспечения наиболее высокой степени очистки используют трубчатые электрофильтры.

    1. Требования по эксплуатации очистки газа

    Эксплуатация узла очистки должна проводиться в соответствии с требованиями действующих нормативных документов.

    • Узел очистки газа должен быть оснащен устройствами для удаления жидкости и шлама в сборные емкости, оборудованные устройствами замера уровня, а также механизированной системой их удаления в транспортные емкости, из которых жидкость, по мере накопления, вывозится с территории ГРС. Емкости должны быть рассчитаны на максимальное разрешенное рабочее давление подводящего газопровода-отвода.

    • Для обеспечения бесперебойной работы систем защиты, автоматического регулирования и управления, импульсный и командный газ должен быть осушен и дополнительно очищен в соответствии с ОСТ 51.40-93, если система подготовки импульсного газа заложена в проекте ГРС.

    • При эксплуатации устройства осушки и очистки газа для систем КИПиА необходимо:

    периодически контролировать и очищать полости приборов и оборудования путем продувок. Очистка полости приборов КИПиА путем продувки осуществляется прибористом КИПиА;

    обеспечивать визуальный контроль состояния фильтрующих и поглотительных элементов устройства подготовки газа;

    регулярно производить замену фильтрующих и поглотительных элементов устройства путем подключения резервного оборудования и выполнения регенерации поглотителей.

    Дренажные и сливные линии, запорная арматура на них должны быть защищены от обмерзания.

    • Газоопасные работы по вскрытию, осмотру и очистке внутренних стенок аппаратов должны проводится по инструкции, предусматривающей меры безопасности, исключающие возможность возгорания пирофорных отложений.

    • Для предотвращения самовозгорания пирофорных соединений аппарата очистки, перед вскрытием, его необходимо заполнить водой или паром.

    Во время вскрытия, осмотра и очистки внутренние поверхности стенок аппаратов необходимо обильно смачивать водой.

    Извлекаемые из аппаратов отложения, содержащие пирофорное железо, необходимо собирать в металлическую тару с водой, а по окончании работы немедленно удалять с территории ГРС и закапывать в специально отведенном месте, безопасном в пожарном и экологическом отношениях.



    Заключение

    Таким образом, общепринятой схемы разделения углеводородных газов нет, в каждом индивидуальном случае в зависимости от состава исходного газа, степени извлечения и чистоты целевых компонентов, производительности установки и многих других факторов на основании технико-экономического анализа может быть выбрана оптимальная схема разделения. Ввиду очень большого количества независимых переменных, к которым относятся технологические параметры процесса, конструктивные характеристики оборудования, метод газоразделения и тип схемы, характеризующийся порядком включения отдельных элементов схемы и их числом, они могут быть выбраны только с помощью электронных вычислительных машин дискретного счета. Метод сепарации является перспективным направлением переработки жидких углеводородов (конденсатов), представляющих для химической промышленности особо ценное сырье.

    Список литературы

    1. Клюев А.С. и др. Проектирование систем автоматизации технологических процессов: Справ. пособ. М.: Энергоатомиздат, 1990.

    2. ГОСТ 21.404-85. Обозначения условные приборов и средств автоматизации.

    3. ГОСТ 21.408-93. Правила выполнения рабочей документации автоматизации технологических процессов.

    4. ГОСТ 21.110-95. Правила выполнения спецификации оборудования, изделий и материалов.

    5. ГОСТ 36.13-90. Щиты и пульты систем автоматизации технологических процессов. Общие технические условия.

    6. Смидович Е.В. Технология переработки нефти и газа. Ч. 2-я. Крекинг нефтяного сырья и переработка углеводородных газов. 3-е изд., пер. и доп. - М.: Химия, 1980 г. - 328 с.,

    7. Яковлева В.Б. Автоматизированное управление технологическими процессами: учеб. пособие для вузов. Л.: ЛГУ, 1988. - 224 с.

    8. Черножуков Н.И., Очистка и разделение нефтяного сырья, производство товарных нефтепродуктов / Н.И. Черножуков. - М., 1978.

    9. Рядов В.Д. Химия нефти и газа / - М.: Нефть и газ, 1998.- 373с.

    10. Макаров, Ю.И., Генкин, А.Э. Технологическое оборудование химических и нефтегазоперерабатывающих заводов / Ю.И. Макаров, А.Э. Генкин. - М.: Машиностроение, 1976. - 368 с.

    11. Емельянов А.И., Капник, О.В. Проектирование автоматизированных систем управления технологическими процессами / А.И. Емельянов, О.В. Капник. - М., 1984.
    1   2   3


    написать администратору сайта