Пакет Mathcad
Скачать 96.5 Kb.
|
Документ 5. Генерация случайных чисел и характеристики их распределения. Графики можно перемещать в любое место документа, указанное положением курсора, они могут иметь любые размеры. На одном графике можно строить несколько кривых; для этого в формате после слова type нужно перечислить параметры кривых, разделяя их запятыми. Версия 2.50 системы обеспечивает возможность построения поверхностей и фигур. При этом необходимо задать функцию двух переменных и сформировать матрицу с условным именем М - массив узловых точек. Работа с файлами Реализован и импорт файлов, содержащих сложные графические построения из других систем, таких, как AutoCAD и TurboCAD. Для этого с помощью специальной программы mostrans, входящей в систему, нужно преобразовать импортируемый файл с расширением mcd. Такой файл после загрузки командой Load вызывает построение графика, верхний левый угол которого задаётся положением курсора. Общение с внешними устройствами Система MathCAD обладает обширными возможностями для общения с внешними устройствами. Помимо записи и считывания документов предусмотрена запись и считывание файлов , хранящих различные данные, - вплоть до векторов и матриц с комплексными коэффициентами. Это позволяет использовать систему для обработки данных, поступающих от внешних устройств. Поддерживаются все основные типы дисплеев: монохромный Hercules, CGA, EGA, VGA и др. Последние версии системы (начиная с 2.50 ) поддерживают работу почти с 40 типами принтеров и плоттеров, включая 9 и 24 - игольчатые принтеры с двухцветной и многоцветной печатью и лазерные принтеры. Автоматически обеспечивается работа с сопроцессорами математических операций. Система MathCAD становится более гибкой Система MathCAD версии 3.0 В систему MathCAD версии 3.0 (фирма Mathsoft ), предназначенную для выполнения научно - технических вычислений, введён ряд новых одна из которых позволяет работать в среде Windows. По - видимому, их появление обрадует всех те6х, кто имеет дело с обработкой чисел. Система MathCAD - это лёгкое в освоении и одновременно мощное средство для выполнения исследований. С точки зрения функций, которые она выполняет, MathCAD можно сравнить с рабочим блокнотом инженера или учёного. На своих листках - кадрах экрана - она позволяет комбинировать уравнения, заметки и графики. Работая над задачей , обычно используется «винегрет» из записей на листках бумаги и распечаток, полученных с помощью электронных таблиц. Продираясь через вычисления с помощью системы MathCAD, не нужно прибегать ни к каким другим средствам. Чтобы пользоваться системой, вам не нужно держать в уме множество специальных обозначений, как это требуется в случае электронных таблиц. Нравится и то, что можно уравнения в том виде, в каком они обычно изображаются в книгах и на классных досках . В эту версию системы введены символьные вычисления, без которых не обходится ни один серьёзный математический пакет. Символьный процессор базируется на пакете Mapple фирмы Waterloo Mapple Software. MathCAD предлагает довольно полный набор встроенных функций. При подготовке данной версии были добавлены две новые полезные функции, обеспечивающие нахождение собственных чисел и собственных векторов для вещественных матриц. Система включает теперь встроенную программу, которая контролирует единицы измерения, и редактор формул. Чтобы уберечь вас от необходимости выискивать формулы, которые приводятся только в справочных изданиях, в данную версию системы включен электронный справочник. Он обеспечивает экранные подсказки которые очень пригодятся новичкам. Имеются, однако, два момента, которые наверняка не понравятся её пользователям. Во - первых, при использовании 35 - см экрана, приходится напрягать глаза, чтобы разглядеть очень маленькие цветные пиктограммы. И во - вторых, качество изображения графиков оставляет желать лучшего. MathCAD PLUS 6.0 Решение алгебраических систем Лучше один раз увидеть[схему задачи],чем сто раз услышать [её условие] - такое расширение пословицы можно отнести ко всем прикладным программам, работающим под управлением операционной системы Windows, которую не зря называют графической оболочкой. Пакет MathCAD в этом смысле - не исключение. Работая в среде Windows, можно с помощью графического редактора PaintBrush (или какого - то ) другого нарисовать схему задачи, а потом через Буфер Обменов ClipBoard перенести рисунок в документ MathCAD. Если теперь в среде MathCAD подвести к рисунку курсор мыши и два раза щелкнуть по её левой кнопке, то обрамление рисунка сразу изменится - рисунок перенесётся в среду PaintBrush, где его можно доработать, а потом опять вернуть в MathCAD. Словесное описание задачи можно ввести в MathCAD - документ ремарками (комментариями). Пакет MathCAD оборудован текстовым процессором, позволяющим оформить, например, научную статью, не прибегая к специализированным средствам. С другой стороны, Буфер Обменов ClipBoard поможет перенести фрагменты MathCAD - документа в Word - документ и там дооформить их. В шестой версии - MathCAD в меню FILE (Файл) появился пункт Export Worksheet (Экспорт), существенно облегчающий эту работу. Решение любой задачи в любой программной среде, как правило, начинается с ввода исходных данных. Работая с языком BASIK (или с каким - то другим ), вводя переменные и задавая им определённый тип, программист заботится не о физике решаемой задачи, а о... памяти машины. Тип числовой переменной с точки зрения программиста - прикладника - это атавизм тех времён, когда память машины была одним из лимитирующих факторов при решении задачи. Пакет MathCAD в этом смысле расточителен - он присваивает всем числовым переменным двойную точность с 15 знаками в мантиссе. Эти переменные предстают перед глазами пользователя либо в целочисленном (17, например ), либо в вещественном (3.14), либо в комплексном виде. Но через знак «: =» в среде MathCAD можно присвоить переменной не только конкретную величину (20, 1,10, 30 - математика задачи), но и размерность (ньютон, метр, угловой градус - физика задачи ). Для присваивания величине размерности за ней ставится знак «помножить» и вводится название соответствующей размерности. А можно поступить по другому - нажать на панели инструментов на кнопку с изображением мерной кружки. После этого на дисплее появится окно со списками физических величин (длина, время, скорость и т.д.) с соответствующим им размерностям (метр, секунда, метр в секунду и т.д.),одну из которых можно вставить в MathCAD - документ. MathCAD не назывался бы математическим пакетом, если бы он не мог решать системы алгебраических уравнений. Конструкция Given ... Find (Дано ... Найти) использует расчётную методику, основанную на поиске корня вблизи точки начального приближения, заданной пользователем. Можно написать требуемую систему уравнений, зажав её между ключевым словом Given и функцией Find. Функция Find возвращает значения переменных, превращающих вышеперечисленные (до слова Given ) уравнения в тождества. Если уравнений более одного, то возвращаемые значения размещаются в векторе - в группе переменных, «зажатых в кулак», но этот «кулак», как мы уже отмечали, легко разжать, выводя на дисплей найденные значения с «первородной» размерностью массы (kg), длины (m) и времени (sec): пакет MathCAD «разжимает» и сам вектор, м составные размерности, приписывая к числам комбинации основных физических единиц. Но не только этим хороша размерность в задачах. Главное то , что она автоматически позволяет отслеживать «физические» ошибки. Если, к примеру, пользователь сложит секунды с метрами, то MathCAD «заругается» и выдаст протестующее сообщение incompatible units (несовместимые единицы). Элегантность решения системы уравнений в среде MathCAD, не требующая кодирования алгоритма или поиска соответствующей внешней процедуры, имеет и обратную сторону : у пользователя возникают естественные в правильности решения. Протестировать нужно не только компьютер, но и пользователя : правильно ли он составил исходную схему ? Сравнивая тип переменной с размерностью физической величины, мы тем самым провели аналогию между пакетом MathCAD и языком BASIK. Продолжим её. Повторяем : знак «: =» в среде MathCAD соответствует операторам Input и Let на языке BASIK, а знак «=» - оператору Print. В среде MathCAD слева от знака «:=» пользователь может написать переменную ( простую, с индексом, матрицу, вектор), а справа - выражение с переменными и функциями , определёнными выше и левее или встроенными в пакет MathCAD. Слева от знака «=» разрешено писать переменную или выражение, правая же часть - это область, всецело принадлежащая среде MathCAD, куда выводятся рассчитанные значения.1 Это свойство дало пакету MathCAD второе название - суперкалькулятор : пользователь набрал сложнейшую формулу, нажал на клавишу «равно» - и ответ готов. А вот жирного знака «равно», разделяющего левую и правую части MathCAD - выражений, на языке BASIK, к сожалению, нет а почему!? В языках QBASIK, Quick BASIK и Visual BASIK от фирмы Microsoft есть конструкции, обладающие свойством, которое с некоторой долей условности можно назвать полиморфизмом. Одно и то же ключевое слово меняет свой смысл в различных программных сюжетах. Так, упоминавшийся знак «=» - это и символ в операторе присвоения ( где Let давно уже не пишут ), и символ в булевом выражении. Другой пример - ключевые слова Mid$ и Time$, которые согласно документации по языку отмечают и встроенную функцию, и оператор языка: A$ = Mid$(²COMPUTER², 3, 3) ¢Здесь Mid$ - функция Mid$(A$, 2,1) =²$$$² ¢ Здесь Mid$ - оператор StartTime$ = Time$ ¢ Здесь Time$ - функция Time$ = ²12:30² ¢ Здесь Time$ - оператор Когда ключевое слово Mid$ стоит в правой части оператора присвоения, оно означает встроенную функцию. Перенос же Mid$ в левую часть превращает его в оператор. Второй пример не совсем правомерен : Time$ правильнее назвать не функцией и не оператором, а системной переменной. Системные переменные есть и в среде MathCAD. Пакету MathCAD не грех перенять из языка BASIC некоторые полезные вещи. Ему в частности, очень не хватает цикла Do...Loop, в тело которого вставляется условие прерывания If...Then Exit Do. В среде MathCAD нельзя, например, в автоматическом режиме реализовывать метод последовательных приближений. Без цикла этот метод допустим только в полуавтоматическом режиме: пользователь задаёт первое приближение искомой переменной, а затем цепочкой формул, где фигурирует данная переменная, получает её новое значение. Расчёт повторяется в цикле с ручным переносом до тех пор, пока новая пара значений не удовлетворит пользователя. Можно поступить ещё проще - не переносить новое значение переменной в головку блока выражений, а продублировать блок нужное число раз. Если в таком алгоритме сходимости нет, то его всё равно используют, называя при этом методом научного тыка. Именно ему адресован полуавтоматический цикл. Кроме того, нужно помнить, что более - менее сложная система нелинейных уравнений окажется не по зубам не только пакету MathCAD, но и другим мощным пакетам - Mathemateca, Maple, Gauss и др. MathCAD в такой ситуации выдаст сообщение Did not find solution (Решение не найдено), заставляя пользователя переходить к полуавтоматическому режиму - менять значения начального приближения и (или) величину точности TOL (TOLerance - точность, погрешность). Функция Find решает систему так, чтобы левые и правые части входящих в неё уравнений отличались на величину, не превышающую значения TOL. Это ещё одна предопределённая (системная) переменная среды MathCAD, хранящая по умолчанию значение 0.001, которое можно изменить, записав в MathCAD - документе выражение TOL : = 0.00000001, например. Но и это часто не помогает. Только при строго определённых начальных условиях пакет MathCAD находит правильное решение. Шаг влево, шаг вправо - расстрел! Малейший отход от начальных условий - и из слова Find «вырывается пламя»: красное сообщение Did not find solutionв той же красной рамке. Но эта же задача с неограниченным диапазоном исходных данных прекрасно решается последовательными приближениями с поиском в цикле корня одного - единственного уравнения. Отход от лобовой атаки (от использования блока Given...Find) возможен лишь в том случае, если система уравнений не абстрактная, какие обычно приводятся в задачниках по математике, а реальная, отображающая конкретную (физическую, химическую, биологическую и т.д.) задачу. Кроме того прикладник (физик, химик, биолог и т.д.), решая задачу может сделать разумные допущения, линеаризирующие, например, некоторые выражения или уменьшающие их число. Другое важное преимущество метода последовательных приближений состоит в том, прикладник, зная физика задачи, может менять точность расчётов при обработке выражений, входящих в систему. В блоке Given...Find, как было уже отмечено, это не допустимо. В нём можно лишь смягчить эту проблему с другого конца - ввести в выражения балластные (нормирующие ) коэффициенты, уравнивающие их по отношению друг к другу и позволяющие им решаться с одной точностью. А это опять же потеря физики в угоду математики. Но тем не менее все перечисленные ухищрения часто остаются тщетными из - за того, что система просто ... не имеет решения, да и вся задача ориентированна не на поиск корней, а на минимизацию некоторых величин. В этом случае функция Find заменяется на функцию Minerr (MINimal ERRor). С помощью блока Given...Minner можно решать широкий класс оптимизационных задач. Для решения линейных алгебраических уравнений в пакете MathCAD есть особые инструменты - операторы и функции работы с матрицами и векторами. Элементы матриц и векторов в среде MathCAD должны либо иметь одинаковую размерность, либо быть безразмерными. А это не просто ошибка пакета, а общая методологическая ошибка: элементы матрицы могут быть с разнородными размерностями. Матрица и вектор пакета MathCAD имеют «родственников» на языке BASIC - двумерный и одномерный массивы. Массив же - это объединение сугубо однотипных величин. Разнотипные переменные объединяются в записи. Что бы примирить физику с математикой, достаточно разрешить в столбцах матрицы помещать величины с разнородными единицами измерений, считая матрицу не только двухмерным массивом простых переменных, но и одномерным массивом векторов. В записи (в векторе) могут, конечно храниться и однотипные переменные - переменные с одной размерностью или вообще лишенные её. Аналог одномерного массива в MathCAD - это матрица с одним столбцом. Но такая «горизонтальная» матрица не выражается через переменную с индексом. Переменная с индексом - это нормальный, «вертикальный», вектор. Если допустить, что матрица - собрание (множество) величин с различной размерностью, то тогда придётся все матричные операторы и функции разделить на группы по отношению к единицам измерений. Так функции min (поиск минимального элемента в массиве ) и max (поиск максимального элемента в массиве ) не могут допустить неодинаковых размерностей в элементах матрицы - аргумента. Оператор же определения детерминанта должен преобразовывать матрицу как массив векторов. Величины в строках здесь должны быть одной размерности. С точки зрения математика (несмотря на отсутствие размерности, что ведёт за собой смысловую потерю физики задачи) решение в среде MathCAD системы линейных алгебраических уравнений через матрицы более оптимально, чем через блок Given...Find: отпадает необходимость в начальном приближении (у линейной системы не более одного корня - вектора). Кроме того, матричное решение задачи - точнее. Есть и другие причины по которым приходится отказываться от размерностей. Международная система физических величин ( СИ ) базируется на семи основных единицах (длина - метр, масса - килограмм, время - секунда, сила тока - ампер, абсолютная температура - кельвин, сила света - кандела и количество вещества - моль). Но в среде MathCAD их только пять: длина, масса, время, заряд и абсолютная температура. Да, как это ни печально, но с единицами измерений при работе в среде MathCAD часто приходится расставаться. Вина здесь не только фирмы MathSoft, но и всей теории размерностей. Дело в том, что эта теория какая - то незаконченная. Недаром её избегают освещать в математических справочниках. В физических же справочниках, когда дело доходит до размерностей, теряется всякая логика. Из - за этого многие научные дисциплины стараются избавиться от пут размерностей, вводя безразмерные величины (критерии): число Рейнольдца, например, если вспомнить аэродинамику. Освобождение от размерностей подкреплено целой теорией - теорией подобия. Всё это не могло отразится на развитии пакета MathCAD: там упомянутая пятёрка размерностей (длина, масса, время, заряд и абсолютная температура) неудобоварима в психологическом и даже в парапсихологическом смыслах. Химики никак не могут понять, как концентрацию раствора можно измерять только молями, которых , кстати, в пакете MathCAD нет. Сама по себе размерность - понятие скользкое, опирающееся не только на науку, но и на привычки людей, законы искусства и даже на постулаты религии. Стоит только вспомнить попытки заменить в метеосводках миллиметры ртутного столба на гектопаскали. Парапсихологический, если можно так выразится, аспект проблемы размерностей в среде MathCAD выражен в том, что пятёрка - число некрасивое, а значит, и неправильное. Там должна быть семёрка, но не та, которая заложена в Международную систему, а некая другая. Семь ¾ число совершенное в науке, в искусстве и в религии: стоит только перечислить цвета радуги, ноты музыкальной гаммы, дни недели, чудеса света, наиболее промышленно развитые страны мира, античных мудрецов, смертные грехи... В классическом варианте языка BASIC семь структурных управляющих конструкций алгоритма (цикл с предпроверкой, цикл с постпроверкой, цикл с выходом из середины, альтернатива, функция, процедура и множественное ветвление ) и семь типов переменных (Integer, Long Integer, Single - precision Floating Point, Double - precision Floating Point, Currency, String и Type - тип, заданныйпользователем). Да и сама цифровая вычислительная техника базируется не на числе 8 (байт), как принято считать, а на числе 7. Два (бита) в степени восемь (256) - это число символов в ASCxx - таблице. Но ASCxx - таблица ни машиной, ни человеком никогда не воспринимается как единое целое, а всегда разбивается на две половины - верхнюю и нижнюю по 128 знаков в каждой. А это два в степени семь, а не восемь. Ещё одна базовая размерность лежит на поверхности, но почему - то напрочь отвергается учеными. Это единица измерения стоимости - рубли, доллары, марки и т.д. Из -за этого в среде MathCAD экономические расчёты лишены размерности. Кстати, в язык BASIC размерность валюты введена косвенно через новый тип числовых переменных - Currency. |