Методичка по ЗНотЧС. Памятка для студентов по подготовке к лабораторной работе, её выполнению и оформлению
Скачать 5.43 Mb.
|
600 бэр. Эту дозу человек может получить как при внешнем, так и внутреннем облучении. |
Органы | Взвешивающий коэффициент |
Гонады | 0,20 |
Красный костный мозг | 0,12 |
Толстый кишечник | 0,12 |
Легкие | 0,12 |
Желудок | 0,12 |
Грудная железа | 0,05 |
Мочевой пузырь | 0,05 |
Пищевод | 0,05 |
Печень | 0,05 |
Щитовидная железа | 0,05 |
Кожа | 0,01 |
Клетки костных поверхностей | 0,01 |
Остальные органы (ткани) | |
4. ВОПРОСЫ К ЗАЧЕТУ
1. Что такое активность радиоактивного препарата? Дайте определение удельной, объемной и поверхностной активности? Укажите единицы их измерения.
2. Какие существуют виды излучения? Какова их природа возникновения и основные свойства?
3. В какой последовательности по степени уменьшения располагаются γ-, α-, β- излучения по проникающей и ионизирующей способности?
4. В чем отличительная особенность γ-излучения от α- и β- излучения?
5. В чем отличие эквивалентной от экспозиционной доз? Какое соотношение единиц измерения их мощности?
6. Эквивалентная и эффективно эквивалентная дозы облучения (определение, сходства и различия).
7. Для чего используются величины ОБЭ и ЛПЭ?
8. О чём свидетельствуют взвешивающий радиационный коэффициент и взвешивающие коэффициенты для тканей и органов?
9. Укажите, какие правила необходимо соблюдать при выполнении лабораторной работы?
Лабораторная работа № 2
ДОЗИМЕТРИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ.
БЫТОВЫЕ ДОЗИМЕТРЫ И РАДИОМЕТРЫ
1. Цель работы — ознакомить студентов с методами обнаружения и измерения радиоактивности, детекторами ядерных излучений, определением мощности дозы γ-излучения естественного фона, плотности потока β-излучения с загрязненных поверхностей, оценкой удельной активности радионуклидов в пробах пищевых продуктов.
2. Порядок выполнения работы:
2.1. Изучить настоящие методические материалы.
2.2. Законспектировать в рабочую тетрадь ответы на контрольные вопросы.
2.3. Перечертить в тетрадь таблицы и заполнить их во время работы с прибором, рассчитать полученные данные и сделать вывод о результатах выполненных измерений.
3. МЕТОДЫ ОБНАРУЖЕНИЯ И ИЗМЕРЕНИЯ
РАДИОАКТИВНОСТИ
Радиоактивные излучения не воспринимаются органами чувств. Они могут быть обнаружены (детектированы) при помощи приборов и приспособлений, работа которых основана на физико-химических эффектах, возникающих при взаимодействии излучении с веществом.
В результате взаимодействия радиоактивного излучения с внешней средой происходит ионизация и возбуждение ее нейтральных атомов и молекул. Такое воздействие вызывает изменения физико-химических свойств облучаемой среды. Указанными свойствами являются: электропроводность веществ (газов, жидкостей, твердых материалов); люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току химических растворов и др. Эти явления приняты за основу при разработке методов регистрации и измерения ионизирующих излучений – фотографический, сцинтилляционный, химический и ионизационный методы.
3.1. ДЕТЕКТОРЫ ЯДЕРНЫХ ИЗЛУЧЕНИЙ
Это устройства для регистрации α- и β-частиц, рентгеновского и γ-излучения, нейтронов, протонов и т.п. Они служат для определения состава излучения и измерения его интенсивности, спектра энергии частиц, изучения процессов взаимодействия быстрых частиц с атомными ядрами и распада нестабильных частиц.
Фотографический метод исторически был первым способом обнаружения ядерных излучений. Метод основан на почернении фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого или хлористого серебра (АgВr или АgСl), содержащихся в фотоэмульсии, восстанавливают металлическое серебро подобно видимому свету, которое после проявления выявляется в виде почернения. Степень почернения фотоэмульсии (фотопластинки, плёнки) пропорциональна дозе излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. В настоящее время фотографический метод широко применяется в ядерной физике при исследовании свойств самых различных заряженных частиц, их взаимодействий и ядерных реакций. На этом принципе основано использование индивидуальных фотодозиметров.
Химический метод. Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов Н+ и ОН-, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основана работа химических дозиметров гамма- и нейтронного излучения ДП-70 и ДП-70М (МП).
Сцинтилляционный метод. Некоторые вещества (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) светятся при воздействии на них ионизирующих излучений. Возникновение свечения является следствием возбуждения атомов под действием излучений. При возвращении в основное состояние атомы испускают фотоны видимого света различной яркости (сцинтилляция). Количество вспышек пропорционально мощности дозы излучения.
Рис. 2.1. Фотоголовка сцинтилляционного детектора ионизирующей радиации.
Фотоны видимого света улавливаются специальным прибором – так называемым фотоэлектронным умножителем (ФЭУ), способным регистрировать каждую вспышку (рис. 2.1). В основу работы индивидуального измерителя дозы (ИД-11) положен сцинтилляционный метод обнаружения ионизирующих излучений. В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.
Ионизационный метод. Сущность его заключается в том, что под воздействием ионизирующих излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы, в результате чего электропроводность среды увеличивается. Если в нее поместить два электрода, к которым приложено постоянное напряжение, то между электродами возникает направленное движение ионов, т.е. возникает так называемый ионизационный ток. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений. Такие устройства называются детекторами излучений. В качестве детекторов в дозиметрических приборах используются ионизационные камеры и газоразрядные счетчики различных типов.
Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик), усилитель ионизационного тока.
Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик) 1, усилитель ионизационного тока (электрическая схема, включающая электрометрическую лампу 2, нагрузочное сопротивление 3 и другие элементы), регистрирующее устройство 4 (микроамперметр) и источник питания 5 (сухие элементы или аккумуляторы) (рис. 2.2).
|
|
Рис.2.2. Схема работы ионизационной камеры
Ионизационная камера представляет собой заполненный воздухом замкнутый объём, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры прилагается напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные — к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующей на камеру.
Ионизационные камеры в зависимости от назначения и конструкции могут работать в импульсном и токовым (интегральном) режимах. Импульсные камеры используют для регистрации отдельных тяжелых заряженных частиц (α-частицы, протоны и т.д.).
Удельная ионизация легких частиц (электроны, позитроны) сравнительно мала, поэтому регистрация их в импульсном режиме неэффективна. Токовые камеры применяют для измерения интенсивности всех типов излучения, которые пропорциональны среднему току, проходящему через камеру. Величина ионизационного тока пропорциональна энергии излучения, поэтому ионизационные камеры измеряют ток насыщения в единицу времени, т.е. мощность дозы данного излучения. Приборы градуируют в единицах мощности дозы. Значит, ионизационные камеры используют не только для измерения дозы излучения, но и ее мощности.
Пропорциональные счетчики выгодно отличаются от ионизационной камеры тем, что начальное усиление первичной ионизации происходит внутри самого счетчика (Кгу=103 - 104). Наличие пропорциональности усиления в счетчиках позволяет определить энергию ядерных частиц и изучить их природу. Пропорциональные счетчики бывают торцового типа, например САТ-7 и САТ-8 (счетчик α-частиц торцовый, СИ-3Б и др.). Чтобы обеспечить проникновение в плоскость счетчика α – частиц, входное слюдяное окно делают очень тонким (4-10 мкм). Наполняют счетчик смесью неона с аргоном почти до уровня атмосферного давления. В счетчиках открытого типа рабочая полость сообщается с внешним воздухом. Такие счетчики работают при атмосферном давлении, они допускают непрерывные протекание или циркуляцию наполняющего их газа и поэтому их часто используют для регистрации активности газовых проб.
Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой. Счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разреженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счётчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счётчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.
В газоразрядных счетчиках используют принцип усиления газового разряда. При отсутствии радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины, свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.
Счетчики Гейгера – Мюллера (газоразрядные счетчики) конструктивно почти не отличаются от пропорциональных счетчиков цилиндрического торцового типа. Основное отличие состоит в том, что внутренний объем счетчика Гейгера наполнен инертным газом
Рис. 2.3. Схема включения счётчика Гейгера-Мюллера.
при пониженном давлении (15-75 гПа), а работа осуществляется в области Гейгера, т.е. в режиме самостоятельного газового разряда (рис. 2.3).
Счетчики для регистрации γ– излучения имеют некоторую особенность в конструкции. Регистрация γ–излучения возможна в результате выбивания вторичных электронов из катода счетчика на основе известных трех механизмов взаимодействия этого излучения с веществом: фотоэффекта, комптонэффекта, образования электронно–позитронных пар.
Вторичные электроны (фотоэлектроны, электроны отдачи, электронно-позитронные пары), попадая в чувствительный объем счетчика, вызывают газовый разряд (ударную ионизацию), который и регистрируется радиометрическим устройством. Этот закон Брэгга-Грея используется также и для дозиметрии нейтронов. Ионизационный метод положен в основу работы таких дозиметрических приборов, как ДП-5А (Б, В), ДП-ЗБ, ДП-22В и ИД-1.
Твердотельные дозиметры. В системе обеспечения радиационной безопасности широко используются твердотельные дозиметры. К последним относятся фотопленочные дозиметры, дозиметры, основанные на окрашивании твердых материалов, и, наконец, твердые вещества, активируемые нейтронами. В качестве примера твёрдотельных дозиметров можно привести полупроводниковые детекторы (ППД) ионизирующих излучений. Действие ППД основано на свойствах полупроводников проводить электрический импульс под действием ионизирующих излучений. Из всех полупроводников наиболее пригодны для детекторов монокристаллы германия и кремния.