парная регрессия. Лаб раб №1 Парная регр пример (1). Парная регрессия
Скачать 136.98 Kb.
|
ПАРНАЯ РЕГРЕССИЯ. Пример. По территориям региона приводятся данные за 199X г.
Требуется: Построить линейное уравнение парной регрессии от . Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал. На одном графике построить исходные данные и теоретическую прямую. Решение Для расчета параметров уравнения линейной регрессии строим расчетную таблицу.
; . Получено уравнение регрессии: . С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб. Тесноту линейной связи оценит коэффициент корреляции: ; . Это означает, что 51% вариации заработной платы ( ) объясняется вариацией фактора – среднедушевого прожиточного минимума. Качество модели определяет средняя ошибка аппроксимации: . Качество построенной модели оценивается как хорошее, так как не превышает 8-10%. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия: . Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как , то уравнение регрессии признается статистически значимым. Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей. Табличное значение -критерия для числа степеней свободы и составит . Определим случайные ошибки , , : ; ; . Тогда ; ; . Фактические значения -статистики превосходят табличное значение: ; ; , поэтому параметры , и не случайно отличаются от нуля, а статистически значимы. Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя: ; . Доверительные интервалы Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: руб., тогда прогнозное значение заработной платы составит: руб. Ошибка прогноза составит: . Предельная ошибка прогноза, которая в случаев не будет превышена, составит: . Доверительный интервал прогноза: руб.; руб. Выполненный прогноз среднемесячной заработной платы является надежным ( ) и находится в пределах от 131,66 руб. до 190,62 руб. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую: |