Главная страница
Навигация по странице:

  • Энерготехнологические парогазовые установки

  • ПГУ для производства азотной кислоты.

  • ПГУ для получения синтетических продуктов.

  • Оптимизация схем и параметров ПГУ

  • Эффективность типовой паровой турбины.

  • Промежуточный перегрев пара.

  • Экономичность ПГУ при частичных нагрузках.

  • Удельные поверхности нагрева.

  • Парогазовые установки в энергетике. Парогазовые установки в энергетике


    Скачать 1.4 Mb.
    НазваниеПарогазовые установки в энергетике
    Дата22.02.2023
    Размер1.4 Mb.
    Формат файлаdoc
    Имя файлаПарогазовые установки в энергетике .doc
    ТипРеферат
    #950305
    страница2 из 3
    1   2   3

    ПГУ с высоконапорным парогенератором



    Во всех типах ПГУ с прямым подводом части теплоты топлива в паровой цикл сжигание дополнительного топлива может осуществляться не перед котлом, а между компрессором и турбиной ГТУ. Избыток теплоты, по сравнению с требуемым для подогрева газов до температуры на входе в турбину передается пароводяной среде в расположенных там же поверхностях теплообмена, образующих вместе с устройствами для сжигания топлива высоконапорный парогенератор (ВПГ). Для утилизации теплоты отработавших в ГТУ газов в выходном тракте сохраняются экономайзерные поверхности, работающие при близком к атмосферному давлении с газовой стороны. Принципиальным достоинством схем с ВПГ является уменьшение массы и габаритов котельных поверхностей, работающих в тракте между компрессором и турбиной ГТУ при повышенных давлениях. Оно тем больше, чем меньше степень бинарности комбинированного цикла, т.е. чем большая доля теплоты подводится в паровой цикл в ВПГ, и проявляется при невысоких температурах газов в ГТУ, их небольшой относительной мощности и сжигании топлива с избытками воздуха, близкими к единице. Коэффициент полезного действия ПГУ с ВПГ при работе на жидком топливе и газе высокого давления, сжатия которого для подачи в ВПГ не требуется, повышается на 1%. С уменьшением доли сжигаемого в ВПГ топлива разница в к.п.д. пропорционально ей уменьшается. Вместе с тем ПГУ с ВПГ принципиально менее надежны, чем ранее рассмотренные ПГУ с «низконапорными» котлами, работающими на сбрасываемых из ГТУ газах. Оборудование в этих схемах жестко взаимосвязано, вследствие чего отказ ГТУ, паровой турбины, любого модуля ВПГ или поверхностей в тракте отработавших в ГТУ газов приводит к останову ПГУ до устранения неисправности. Автономная работа паровой или газотурбинной части и их разновременное сооружение невозможны.

    Высоконапорный парогенератор конструктивно сложнее обычного котла. Его поверхности теплообмена тесно расположены внутри прочного корпуса, рассчитанного на давление 1–1,5 МПа. В результате предельная паропроизводительность ВПГ определяется транспортными габаритами блоков заводской поставки и составляет 250–350 т/ч на один корпус. Сборку их производят на заводе с использованием специальных приспособлений. Для более мощных ПГУ количество корпусов необходимо увеличивать. Большое количество единиц оборудования затрудняет компоновку и конструкцию газовых трактов высокого давления, увеличивает трудоемкость ремонтов, особенно сложных внутри ВПГ.

    Наличие между топкой и газовой турбиной большой массы (сотен тонн) металла поверхностей нагрева ВПГ приводит к выносу в турбину окалины и ускоренному износу ее лопаток. Распространенные ГТУ со встроенными камерами сгорания, например ГТЭ-150, вообще нельзя применить в схемах с ВПГ.

    Увеличение доли газотурбинной мощности для повышения экономичности ПГУ с ВПГ вызывает большие трудности. При начальных температурах газов 950–1100 °С в схемах с близким к термодинамически оптимальному соотношением газо- и паротурбинных мощностей происходит вырождение ВПГ. Так как температура газов в нем снижается всего на 300 °С, количество поверхностей теплообмена в ВПГ сокращается, а для охлаждения отработавших в ГТУ газов с 450–550 до 100–150 °С необходимы точно такие же, как в котле-утилизаторе, поверхности. Поскольку именно эти поверхности работают с небольшими температурными напорами, они составляют более 80% поверхности всего котла-утилизатора. Конечно, масса расположенных в ВПГ труб значительно меньше, чем поверхностей аналогичного назначения в котле-утилизаторе, но с учетом прочного корпуса ВПГ суммарная металлоемкость котельного оборудования в ПГУ с ВПГ оказывается больше, чем котла-утилизатора. Увеличение относительного расхода газов и доли теплоты, передаваемой в паровой цикл от отработавших в ГТУ газов, приводит к необходимости переноса из ВПГ в выходной тракт ГТУ части испарительных и пароперегревательных поверхностей с соответствующим усложнением тепловой схемы и трассировки трубопроводов. При дальнейшем повышении начальной температуры газов в ГТУ эти трудности возрастают.
    Парогазовая установка с вводом пара в газовую турбину

    Большинство действующих парогазовых установок, а их мощность составляет в настоящее время в мире несколько тысяч мегаватт, работает по «классическому» бинарному циклу. В этой схеме пар одного или двух давлений, выработанный в котле-утилизаторе (КУ) в результате использования тепла отработанных газов газовой турбины (ГТ), поступает в паровую турбину (ПТ). Повышение начальной температуры газа Тги соответствующей ее оптимальной степени повышение давления в компрессоре πкувеличивают к.п.д. верхней части цикла и установки в целом и изменяют соотношение мощностей ГТ и ПТ в пользу первой. К.п.д. выработки электроэнергии бинарными установками в диапазоне температур ГГ=1050-Н400 °С составляет 46–54%. Дальнейший рост к.п.д. парогазовых установок связан не только с ростом начальных параметров, но и со схемными решениями – переходом к ПГУ с вводом (инжекцией) пара непосредственно в ГТ. Эта схема впервые была предложена академиком С.А. Христиановичем с сотрудниками. В последние годы она нашла достаточно широкое применение за рубежом, получив по латинской аббревиатуре название схемы STIG или при наличии промежуточного охлаждения воздуха в компрессоре схемы ISTIG. В первоначальных вариантах пар в ограниченном количестве вводился в камеру сгорания для снижения образования оксидов азота (так называемый экологический впрыск пара). В последующем количество пара, подаваемого в камеру сгорания, было увеличено. Он стал составлять значительную долю рабочего тела ГТ (энергетический впрыск пара). Это дало возможность поднять удельную (на единицу расхода воздуха на входе в компрессор) мощность ГТУ. И наконец, на третьем этапе вырабатываемый в КУ пар полностью используется в тракте ГТ – большей частью как рабочее тело, а также для охлаждения высокотемпературного лопаточного аппарата ГТ, частично или полностью замещая охлаждающий воздух. Это увеличивает эффективность охлаждения лопаточного аппарата, обеспечивает возможность повышения Тгдо 1500–1600 °С при использовании современных конструкционных материалов и значительно снижает потребную мощность компрессора, что существенно, поскольку доля расхода воздуха на охлаждение при высоких Тг становится чрезвычайно большой (до 15–20%). К.п.д. выработки электроэнергии в установке 18Т1С в диапазоне температур 1400–1600 °С составляет 51–56%. Значительно выше и удельная мощность на единицу расхода рабочего тела ГТ, что позволяет на базе существующего технологического оборудования, прежде всего авиационного, резко увеличить полезную мощность выпускаемых ГТ.

    Тепловая схема ПГУ с впрыском пара может быть предельно упрощена: из нее исключаются паровая турбина, конденсатор и соответствующая система охлаждения циркуляционной воды (рис. 1). Это создает предпосылки для существенного снижения капитальных затрат и срока ввода новых установок; при этом основная цель – достижение минимума затрат на получение электроэнергии – достигается не при предельно высоком к.п.д. установки, а при несколько более низких значениях тепловой экономичности, но при существенном упрощении тепловой схемы. Установление оптимального соотношения между целесообразным снижением тепловой экономичности и упрощением тепловой схемы представляет самостоятельную задачу и не является предметом данной статьи. К.п.д. этой установки составляет 55,8% при удельной мощности 1,18 МВт на 1 кг/с воздуха на входе в компрессор низкого давления.

    При разработке тепловой схемы высокотемпературной ПГУ с впрыском пара преследовалась цель свести к минимуму затраты на получение электроэнергии, а не достижения максимальной тепловой экономичности. В связи с этим был принят ряд технических решений, направленных на снижение капитальных затрат и не оптимальных с точки зрения к.п.д.:

    – выбран сравнительно простой термодинамический цикл с одним промохлаждением воздуха при сжатии;

    – общая степень повышения давления и количество впрыскиваемого пара в продукты сгорания установлены ниже оптимальных значений;

    – не использовано низкопотенциальное тепло уходящих газов и охлаждаемого воздуха.

    Если оптимизировать представленный вариант для достижения максимального к.п.д. и внести ряд усложнений в принципиальную тепловую схему (например, использовать паротурбинный привод компрессора низкого давления, увеличить общую степень повышения давления и впрыск пара в камеру сгорания до оптимального с точки зрения термодинамики значения, уменьшить температурные напоры в котле-утилизаторе и т.п.), к.п.д. ПГУ (нетто) может достигнуть 58,0–58,5%, а при использовании низкопотенциального тепла уходящих газов (снижение их температуры до 105 °С) превысит 60%.

    Однако анализ показывает, что подобное увеличение тепловой экономичности не оправдывает значительного усложнения установки и роста капитальных затрат, ухудшающих перспективы практической реализации установки.

    Оценки показали, что стоимость выработки электроэнергии на ПГУ, работающих по циклу ISTIG, будет на 10–12% ниже, чем на обычных ПГУ, сочетающих ГТ и ПТ, и на 20–25% ниже, чем на обычных типовых паротурбинных электростанциях, использующих в качестве топлива природный газ, с турбинами К-300–240. Очень существенно (в 3–4 раза) снижаются сроки окупаемости капиталовложений.

    В предложенной схеме ПГУ выработанный в КУ пар после прохождения газовой турбины выбрасывается вместе с отработанными газами в атмосферу. Эти потери восполняются химочищенной водой. Требуемая степень чистоты пара, идущего на охлаждение лопаточного аппарата и подаваемого непосредственно в камеру сгорания, разная. Это учитывается в схеме КУ, его водным режимом и схемой сепарации и промывки пара. Проведенные оценки показали, что расходы на химочистку повышенного количества воды в ПГУ с вводом пара не будут превышать 3,5–4% стоимости топлива. Частично они будут скомпенсированы более чем в 3 раза меньшим суммарным потреблением воды установкой на выработанный киловатт-час.

    Основными загрязняющими атмосферу компонентами в отработанных газах ПГУ на природном газе являются оксиды азота NОХ. Процесс горения в камерах сгорания (КС) происходит при составе топливовоздушной смеси в зоне реакции, близком к стехиометрическому, в так называемых «стехиометрических зонах». Параметры этих зон (температура, давление, интенсивность переноса тепла и вещества, время пребывания газа в них) в значительной мере определяют не только скорость горения, но и скорость образования тех оксидов азота, которые называют «термическими» (их вклад является преобладающим). Наиболее сильное влияние на выбросы NОХ оказывает температура в стехиометрических зонах. Ввод в зону реакции водяного пара, который в данном случае является инертным компонентом, снижает температуру в этой зоне, что приводит к заметному уменьшению выбросов оксидов азота.

    При пониженной температуре в стехиометрической зоне равновесная концентрация NОХ, отвечающая этой температуре, остается весьма высокой, заметно превышающей допустимые нормы для NОХ в продуктах сгорания. Однако в реальных условиях сжигания топлива в камере сгорания ГТУ равновесная концентрация NОХ никогда не достигается. Из-за малого времени пребывания в стехиометрической зоне концентрация NОХ оказывается много меньше равновесной. Образование NОХ продолжается в послепламенной зоне – в объеме КС. Оптимизация подвода и смешения вторичного воздуха и оставшейся части инертного компонента (пара) с первичным потоком, снижение времени пребывания продуктов сгорания в КС и уровня температур в ней самым радикальным образом сказываются на концентрации NОХ на выходе из камеры. Предварительное смешение топлива с паром «улучшает» соотношение объемных расходов газообразного топлива и окислителя, облегчает организацию перемешивания компонентов и организацию микрофакельного сжигания, что согласно имеющимся данным ведет к снижению выбросов NОХ.

    Для высокотемпературных венцов лопаточного аппарата современных газовых турбин характерный уровень тепловых потоков составляет 1,5–2 МВт/м. Это достаточно большие значения. Интенсивность теплообмена определяется большим числом факторов, из которых основными являются число Рейнольдса, градиент давления и степень внешней турбулентности потока. Ситуация усложняется неравномерным распределением плотности теплового потока по обводу профиля лопатки. Изменением размера пор и проницаемости пористой стенки можно сгладить неоднородность температуры стенки при любом известном распределении теплового потока вдоль лопатки.

    Основная проблема, безусловно, состоит в создании лопаток с проницаемой стенкой. Имеется несколько путей их создания. Первый – методом испарения составляющих материалов: матричного сплава и керамики электронным лучом и конденсации (осаждения) в вакууме пористой оболочки на каркас лопатки. Основа этого метода разработана в ИЭС им. Е.О. Патона. Второй вариант состоит в использовании многослойных оболочек из перфорированных пластин. Такие работы развивались в МГТУ. Третий – в применении сплошных оболочек со значительным числом отверстий микроперфорации. И, наконец, четвертый – создание оболочек из сварно-катаных сеточных материалов (МГТУ). Проблема создания проницаемых лопаток включает в себя как чисто технологические аспекты, так и вопросы конструирования при обеспечении требуемых прочностных характеристик лопаток с проницаемой (ослабленной в механическом отношении) оболочкой. Дополнительные осложнения вносит возможность ухудшения газодинамических характеристик лопатки из-за шероховатости поверхности и наличия вдува. Поэтому проведение соответствующих экспериментальных и расчетных исследований для снижения газодинамических потерь и оптимизации параметров вдува и характеристик пористой оболочки является неразрывной составной частью комплекса работ по созданию пористой лопатки.

    Смежной является проблема предотвращения заноса проницаемой оболочки лопатки солями, содержащимися в охлаждающем лопатку паре. Как показали исследования, современные методы водоподготовки, водного режима барабанных котлов, сепарации и промывки пара могут обеспечить должное качество пара. Вместе с тем сохраняется определенная опасность выпадения в процессе прохождения паром через обогреваемую газом пористую оболочку лопаток железооксидных соединений, имеющих высокий коэффициент распределения солей между паровой и жидкой фазами и отрицательный коэффициент растворимости. Питание парогенератора ПГУ водой, удовлетворяющей нормам ПТЭ для котлов сверхкритического давления, и промывка пара этой же водой обеспечат такой уровень образования отложений, который гарантирует длительный рабочий ресурс лопаточного аппарата.

    Повышенная удельная электрическая мощность на 1 кг/с расхода воздуха через компрессор в ПГУ с вводом пара делает возможным достижение единичной мощности 250–300 МВт на базе модифицированных наиболее крупных из существующих авиационных двигателей. К таким, в частности, можно отнести двигатель РД36–51 Рыбинского моторостроительного завода, серийно выпускавшийся для самолетов ТУ-144 и имеющий расход воздуха на входе в компрессор 273 кг/с.

    Модификация связана с существенным увеличением степени сжатия, введением в тепловую схему промежуточного охладителя, переходом к схеме двигателя со свободной силовой турбиной и двухвальным компрессором (при суммарном πк= 46,8 степень сжатия в к.н.д. составляет 2,6. Это позволяет осуществить работу к.н.д. с пологим протеканием характеристики, в сочетании с промежуточным охлаждением воздуха уменьшить диапазон изменения приведенной частоты вращения к.в.д. на дроссельных режимах и обеспечить запас устойчивости компрессора и его работу с незначительным изменением к.п.д.
    Основные параметры установки (условно отнесены к 100 кг/с воздуха на входе в КНД)

    Мощность, МВт ____________________________________ 118,8

    К.п.д. нетто, % ____________________________________ 55,8

    Расход электроэнергии

    на собственные нужды, % ________________________ 2,2

    Расход пара, кг/с: на впрыск в камеру сгорания __________ 17,8

    на охлаждение турбины

    высокого давления ______________________________ 3,3

    на охлаждение турбины низкого давления

    и силовой турбины ________________________________ 3,3

    Температура уходящих газов, °С _______________________ 149

    Параметры пара в котле-утилизаторе, МПа/°С:

    высокого давления ______________________________ 4,7/470

    низкого давления ___________________________________ 1,96/400

    охлаждающего, °С ________________________________ 350


    Агрегат

    Твх °С

    Р вх

    МПа

    Твх °С

    Р вых
    МПа

    Степень

    сжатия (расширения)

    Мощность, МВт

    КНД


    15


    0,101


    117


    -


    2,6


    10,4


    КВД


    50


    -


    515


    -


    18,0


    48,9


    ТВД


    1600


    4,29


    1308


    -


    2,25


    48,9


    тнд


    1308


    -


    1234


    -


    1,20


    10,4


    Силовая

    турбина

    1234


    -


    599


    0,101


    16,1


    121,5



    Энерготехнологические парогазовые установки
    Высокие температура и давление продуктов сгорания топлива в высоконапорном парогенераторе позволяют использовать их в качестве теплоносителя в технологических процессах для получения химических продуктов. В такой энерготехнологической установке осуществляется совместное производство электроэнергии, тепла и химических продуктов. Как и в любой энерготехнологической или комбинированной энергетической установке, это приводит к снижению себестоимости продукции, так как какие-то из вырабатываемых продуктов можно рассматривать как побочные, не требующие существенных дополнительных затрат производства.

    Особенностью энерготехнологических установок на базе ПГУ с ВПГ являются малые габариты реакторов и других технологических аппаратов для производства химических продуктов, что обусловлено ведением технологического процесса при высоком давлении. В качестве иллюстрации можно рассмотреть два типа энерготехнологических ПГУ.

    ПГУ для производства азотной кислоты. До промышленного производства азотной кислоты путем контактного окисления аммиака применялся термический способ фиксации атмосферного азота путем его окисления в высокотемпературной среде с помощью вольтовой дуги. Этот способ не получил широкого применения вследствие большого удельного энергопотребления до 10 000–14 000 кВт-ч на 1 т продукта.

    В ЦКТИ и ГИАПе был разработан проект энерготехнологической ПГУ, в которой совмещено производство электроэнергии и окислов азота.

    Газы, содержащие окислы азота, получаются в этой схеме без существенной затраты топлива, так как тепло от сгорания топлива почти полностью используется на выработку электроэнергии и на теплоснабжение. Оборудование для производства азотной кислоты располагается в газовом тракте между парогенератором и газовой турбиной. Азотная кислота получается из окислов азота в продуктах сгорания топлива под давлением от нескольких, до десятков атмосфер. Высокое давление несколько компенсирует низкую концентрацию окислов азота в продуктах сгорания и позволяет выполнять технологические аппараты компактными.

    Реакции образования окислов азота в пламени обратимы, и скорость их растет с ростом температуры факела, причем при естественном охлаждении продуктов горения равновесная концентрация окислов азота как бы автоматически следует за температурой. Если скорость охлаждения продуктов сгорания от 2500 до 1500° С искусственно форсировать, то концентрация выхода окислов азота приближается к равновесной при температуре факела. При температуре факела около 2500° С и скорости охлаждения 250000 град/с содержание окислов азота в газах составляет около 2%».

    Высокая температура газов в ВПГ может быть получена добавкой кислорода к воздуху или подогревом воздуха до высокой температуры (1200–1500° С). Добавка кислорода в основном нужна не для процесса сжигания топлива, а для интенсификации реакции окисления азота и повышения концентрации этих окислов в газе. Быстрое охлаждение продуктов сгорания до 1500° С происходит в конвективно-испарительных газоходах парогенератора.

    Парогазовый блок мощностью 225 МВт при давлении воздуха за компрессором 9,5 ата и температуре газа перед турбиной 800° С может иметь к. п. д. 40%. При температуре греющих газов. 1000/125° С, температуре перед парогенератором 750° С и расходе воздуха в ГТУ 720 т/ч производительность энерготехнологической ПГУ по отпуску азотной кислоты получается 15 т/ч.

    Себестоимость азотной кислоты в энерготехнологической ПГУ ниже, чем на существующих заводах с контактным окислением аммиака.

    ПГУ для получения синтетических продуктов. Перспективным типом энерготехнологической установки представляется ПГУ с конверсией смеси природного газа и пара под давлением 20 – 30 ата в трубчатом аппарате (в газоходе ВПГ) для получения азотно-водородной смеси, являющейся исходным продуктом в производстве азотной кислоты и азотистых удобрений, или водорода, необходимого в производстве синтетических углеводородов.

    Продукты сгорания с температурой 1600° С поступают в трубчатый конвертор, состоящий из жаропрочных труб диаметром НО мм, заполненных катализатором–керамическими кольцами из активного никеля.

    При температуре 750–800° С концентрация водорода в конвертированном газе достигает 50–60%. Поскольку конверсия сопровождается горением, в конвертированном газе содержится до 25% углекислоты, используемой для синтеза углеводородов.

    На ТЭЦ нефтеперегонных заводов такие ПГУ могут использоваться для конверсии нефтяных газов (от перегонки нефти) и водяного пара. Получаемый при этом водород используется для извлечения серы из нефти при получении бессернистых мазутов.
    Оптимизация схем и параметров ПГУ
    Термодинамическая оптимизация тепловых схем и параметров парогазовых установок позволяет из большого количества возможных вариантов отобрать основные для детального технико-экономического анализа.

    Начальные параметры паровой ступени парогазового цикла не требуют оптимизации, поскольку в зависимости от мощности агрегатов они стандартизированы (35 ата, 435° С; 90 ата, 535° С; 130 ата, 565° С; 240 ата, 560–565° С). Дальнейшее повышение начального давления и температуры пара (до 300–400 ата, 600–650° С) для паротурбинных установок экономически не оправдывается. Для парогазовых установок, имеющих более высокий к. п. д., дальнейшее повышение начальных параметров пара тем более неперспективно.

    Конечное давление пара, регенеративная система паровой ступени цикла, параметры газовой ступени подлежат технико-экономической оптимизации, при которой используются результаты предварительной термодинамической оптимизации. Технико-экономическая оптимизация основана на исследовании динамики соотношения капитальных и эксплуатационных затрат на установку при изменении тепловой схемы и параметров цикла.

    Усложнение тепловой схемы и повышение параметров пара и газа приводит к увеличению капитальных затрат на оборудование установки. Увеличение капиталовложений допустимо при условии, что они компенсируются уменьшением эксплуатационных расходов, из которых основными являются расходы на топливо и зарплата персонала. Топливная составляющая эксплуатационных расходов уменьшается с повышением параметров пара и газа и отчасти с ростом мощности агрегатов. Составляющая зарплаты уменьшается в основном с увеличением мощности агрегатов.

    Эффективность типовой паровой турбины. Вытеснение паровой регенерации и ограничения по прочности проточной части не позволяют сохранить номинальный расход пара на турбину при использовании ее в схеме ПГУ, что приводит к уменьшению максимальной электрической мощности паровой ступени ПГУ.

    Чтобы полностью загрузить часть высокого давления (ЧВД). но не увеличивать пропуск пара через последние ступени части низкого давления (ЧНД), при проектировании ПГУ изыскиваются пути разгрузки ЧСД и ЧНД паровой турбины. Основные варианты этого решения – перепуск пара мимо перегруженных ступеней турбины с конденсацией его в особом теплообменнике или с расширением этого пара в особой турбине.

    Наиболее эффективный способ увеличения расхода пара без перегрузки ЧСД и ЧНД – пропуск отбора пара через дополнительную турбину с конденсацией его в дополнительном конденсаторе.

    Дополнительная турбина может быть расположена на одном валу с газовой турбиной, причем она может служить и пусковой. В данном случае в дополнительной турбине предпочтительнее использовать пар из отбора на деаэратор.

    Для каждого способа увеличения расхода пара можно определить граничную величину стоимости топлива (соответствующую нулевому значению экономии расчетных затрат), до которой экономически оправдывается использование дополнительной мощности ПГУ.

    Промежуточный перегрев пара. Промежуточный перегрев пара для конденсационных ПГУ предопределяется стандартными параметрами пара. В теплофикационных ПГУ эффективность промежуточного перегрева пара (экономия топлива и расчетных затрат) зависит от относительного расхода пара и противодавления паровой турбины

    Зависимость оптимальной величины давления ропт промежуточного перегрева от начальных параметров пара рги tiпоказана на рис. 6, а, от относительного расхода пара dи температуры промежуточного перегрева пара tnна рис. 6, б.


    Рис. 6. Оптимальное давление промежуточного перегрева для парогазовой ТЭЦ с противо-давлением (точка а-90 ата, 535° С; точка Ъ – 130 ата, 565° С; точка с – 240 ата, 580° С)
    Сплошные линии относятся к схеме с параллельным подогревом питательной воды в регенеративных подогревателях и экономайзере, штриховые линии – к схеме с последовательным подогревом питательной воды. Приведенные величины оптимального давления промежуточного перегрева являются ориентировочными.

    Экономичность ПГУ при частичных нагрузках. В зависимости от схемы и параметров ПГУ имеют различную тепловую экономичность на частичных нагрузках (рис. 8). У ПГУ сдвухвальной (с разрезным валом) ГТУ к.п.д. на частичных нагрузках снижается наиболее значительно вследствие снижения температуры газов перед ГТУ и уменьшения расхода воздуха и газа через ГТУ при уменьшении частоты вращения компрессора.
    η ном
    4

    0 ,95

    3
    0 ,9 2

    1




    0,5 0,6 0,7 0,8 0,9 N/Nном

    Рис. 8. К. п. д. ПГУ при частичных нагрузках:

    / – двухвальная ГТУ; 2-одновальная ГТУ; 3 – одновальная ГТУ с дополнительной камерой сгорания; 4 – одновальная ГТУ с дополнительной камерой сгорания, экранированной трубами пароперегревателя
    В ПГУ с одновальной ГТУ снижение к. п. д. на частичных нагрузках менее значительно, так как при постоянной частоте вращения компрессора, расход воздуха и газа остается постоянным. Дополнительная камера сгорания позволяет поддерживать постоянными температуру газов перед ГТУ и мощностью ГТУ независимо от нагрузки паровой турбины. Это уменьшает снижение к. п. д. одновальной ГТУ на частичных нагрузках. В случае экранирования дополнительной камеры сгорания пароперегревательными трубами к. п. д. ПГУ на частичных нагрузках еще повышается. ПГУ с докритическими параметрами пара и одновальной ГТУ следует рассчитывать при максимальном режиме по коэффициенту избытка воздуха а = 1,3 – т – 1,5 (рис. 9). В этом случае при частичных нагрузках ПГУ будет работать с повышенным избытком воздуха, что позволяет сохранить высокий к. п. д. установки.

    Кривая к. п. д. ПГУ с двухвальной ГТУ при промежуточном охлаждении воздуха и промежуточном нагреве газа находится между кривыми 1 и 2 на рис. 8.

    Для ПГУ с закритическим давлением пара и температурой перед ГТУ до 850° С оптимальные показатели достигаются при минимальном избытке воздуха. Это условие выдерживается в случае использования двухвальной ГТУ с компрессором, имеющим переменную частоту вращения и обеспечивающим вследствие этого минимальные избытки воздуха на всех режимах. При температуре перед ГТУ свыше 850° С оптимальные показатели ПГУ достигаются применением одновальной ГТУ, имеющей повышенные коэффициенты избытка воздуха.

    Удельные поверхности нагрева. При оптимизации схем и параметров ПГУ необходимо учитывать влияние начальной температуры газовой ступени и избытка воздуха на величину поверхностей нагрева ВПГ.

    С повышением температуры газов перед турбиной уменьшается количество тепла, восприни-маемого испарительными и пароперегревательными поверхностями нагрева с высокой эффек-тивностью теплообмена, и увеличивается количество тепла, воспринимаемого экономайзером при менее интенсивном теплообмене. Это приводит к резкому увеличению металлоемкости эко-номайзера при небольшом уменьшении металлоемкости остальных поверхностей нагрева ВПГ. При повышении температуры перед газовой турбиной на 100° С определенному уменьшению испарительных поверхностей нагрева соответствует приблизительно десятикратное увеличение поверхности нагрева экономайзера

    Увеличение расхода газов при большом избытке воздуха мало влияет на величину испарительных и пароперегревательных поверхностей нагрева. Увеличение скорости газов при большом избытке воздуха повышает эффективность конвективного теплообмена, что позволяет поддерживать постоянной температуру перегрева пара и отказаться от регулятора перегрева пара. Удельные поверхности нагрева экономайзера увеличиваются в большей степени, чем избыток воздуха. На долю экономайзера приходится около 70% всех поверхностей нагрева и около 50% металловложений ВПГ, однако величина удельных поверхностей нагрева экономайзера ВПГ составляет 0,1 – 0,2 м2, что не превышает соответствующих величин для экономайзеров обычных котлоагрегатов.
    1   2   3


    написать администратору сайта