Главная страница

Первая. Общая микробиология. Глава место микроорганизмов среди других живых существ классификация и


Скачать 1.23 Mb.
НазваниеПервая. Общая микробиология. Глава место микроорганизмов среди других живых существ классификация и
Анкорlektsii_po_mikre.doc
Дата09.03.2018
Размер1.23 Mb.
Формат файлаdoc
Имя файлаlektsii_po_mikre.doc
ТипДокументы
#16466
страница10 из 24
1   ...   6   7   8   9   10   11   12   13   ...   24

Гиперчувствитель­ность немедленного типа (ГЧНТ) связана с анти­телами, следовательно, зависит от В-лимфоцитов (В-зависимая ал­лергия). Аллергические реакции этого типа проявляются уже через 20-30 минут после по­вторной встречи с ан­тигеном. К ГЧНТ относятся: анафилаксия, сывороточная болезнь, сенная лихорадка, бронхиальная астма, феномен Артюса и дру­гие.

Анафилаксия (греч. ana - обратный, filaxis -защита). В основе ана­филаксии лежит сенси­билизация, то есть обра­зование антител в ответ на введение аллергена парентеральным путем. Явление анафилак­сии наиболее четко демонстрируется на морских свинках. Подкожно морской свинке вводится сенсибилизирующая доза чужеродного белка -0,01-0,0001 мл лошадиной сыворотки. Через 10-14 дней в кровяное рус­ло вводится разрешающая доза этого же белка в количестве 0,01-0,1 мл. Через 1-5 минут у морской свинки развивается анафилактический шок. Животное начинает беспокоиться, чешет лапками нос, чихает, шерсть взъерошена, появляется одышка, непроизвольное выделение мочи и кала, судороги. Через 5-10 минут в большинстве случаев свинка погибает.

Если выжившему после шока животному снова ввести тот же ан­тиген, то реакции не развивается, так как наступило состояние десен­сибилизации, сохраняющееся в течение 2-3 недель. Шок не возникает также и в том случае, если разрешающую дозу антигена ввести вскоре после сенсибилизации или вводить под наркозом.

Анафилактический шок может возникнуть у человека как осложне­ние при введении, чаще повторном, гетерологичной (чужеродной) ле­чебной сыворотки или антибиотиков. Сразу же после введения сыво­ротки или даже во время ее введения появляется беспокойство пациен-

та, одышка, падение кровяного давления и температуры, потеря со­знания. Бели не оказана немедленная медицинская помощь, наступает смерть.

Для предупреждения анафилактического шока иммунные гетеро-логичные (например, лошадиные) сыворотки вводят по способу, пред­ложенному A.M. Безредка в 1907 г. Способ в настоящее время видо­изменен и усовершенствован.

1) Внутрикожно вводят 0,1 мл нормальной лошадиной сыворотки, разведенной 1:100. Ампула с такой сывороткой имеется в коробке с лечебной сывороткой. Наблюдают реакцию пациента в течение 20 минут.

2) При отрицательной реакции (диаметр папулы в месте инъекции не более 0,9 см, краснота незначительная) вводят лечебную сыворотку в дозе 0,1 мл подкожно. Наблюдают в течение 30-60 минут за общей реакцией пациента.

3) При отсутствии реакции вводят всю необходимую дозу лечеб­ной сыворотки

При положительной реакции, указывающей на повышенную чувс­твительность, лечебную сыворотку вводят только по жизненным по­казаниям. Предварительно проводится десенсибилизация с помощью разведенной сыворотки при соблюдении необходимых мер предосто­рожности, предусмотренных инструкцией

Во всех случаях применения гетерологичной сыворотки следу­ет помнить о возможности возникновения, хотя и в редчайших случаях, анафилактического шока Поэтому необходимо обеспе­чить медицинское наблюдение за привитыми в течение часа после инъекции.

Сывороточная болезнь возникает через 7-15 дней после первично­го введения обычно больших доз чужеродной сыворотки. Болезнь про­является в виде отека кожи и слизистых оболочек, повышения темпе­ратуры тела, 6 эли в суставах, сыпи, кожного зуда.

Гиперчувствительность замедленного типа. ГЧЗТ связана не с анти­телами, а с иммунными лимфоцитами - Т-эфекторами (Те). Это Т-зависимая аллергия. К данному типу аллергии относитися инфекционная аллергия. Наблюдается она при туберкулезе, бруцеллезе, туляремии, ток-соплазмозе, грибковых заболеваниях. Аллергические пробы использу­ют в диагностических целях. Аллергены, полученные из микробов, вво­дят внутрикожно или накожно. При наличии повышенной чувствитель­ности к возбудителю через 24-48-72 часа развивается воспалительная реакция. Диагностические аллергические пробы применяются при ту­беркулезе (реакция Манту с туберкулином), при бруцеллезе, сибирс­кой язве и др.

Контактная аллергия. Повышенная чувствительность аллергичес­кого характера к лекарственным препаратам связана с выработкой антител или иммунных лимфоцитов. Это явление существенно отлича­ется от обычного усиления фармакологического действия лекарственного препарата.

Некоторые лекарственные средства имеют достаточно высокую молекулярную массу, чтобы действовать как полноценные антигены и вызвать иммунный ответ. Но в большинстве случаев аллергические реакции развиваются к лекарственным средствам, имеющим молеку­лярную массу менее 1 кД. Эти вещества действуют как гаптены и ста­новятся полноценными антигенами после соединения с белком хозяина. Некоторые лекарства могут прямо соединяться с протеинами, но боль­шинство, такие как аспирин, барбитураты, сульфаниламиды, вначале подвергаются частичному метаболизму.

При повышенной чувствительности к лекарствам может наблю­даться любой тип аллергической реакции. Ответственными за это яв­ляются антитела и иммунные лимфоциты. Клинические проявления: лихорадка, высыпания на коже и слизистых оболочках, отек, анафи­лактический шок, астма, васкулиты, аутоиммунные реакции.

Аллергии могут быть острыми и хроническими. Наиболее тяжелое проявление - это анафилактический шок, который встречается редко, но наступить может неожиданно.

Для выявления лекарственной непереносимости выясняется анам­нез. Кожные пробы небезопасны, так как у пациента с повышенной чувствительностью даже ничтожная доза препарата может вызвать па­тологическую реакцию. Разработаны лабораторные тесты in vitro, в частности, химическая эритрограмма (ускорение гемолиза эритроци­тов пациента под влиянием лекарственного средства), а также РПГА - реакция пассивной гемагглютинации, в которой антитела сыворот­ки крови пациента реагируют с лекарственным средством, адсорбиро­ванном на эритроцитах.

Наиболее полно изучены аллергические реакции к пенициллину. Реакции эти разнообразны. Продукты распада бензилпенициллина в организме могут вызвать как ГЧНТ, так и ГЧЗТ. Большинство нор­мальных взрослых людей имеют сывороточные антитела к бензилпенициллину. Наиболее часто встречаются IgG, но они не принимают уча­стия в аллергических реакциях. Напротив, IgG действуют как блоки­рующие антитела, предотвращая аллергические реакции. Иммуноглобулины класса IgE участвуют в аллергической реакции немед­ленного типа - анафилактическом шоке и в крапивнице. Дерматиты являются ГЧЗТ с участием иммунных лимфоцитов и наблюдаются пре­имущественно среди лиц, занятых производством антибиотиков.

При аллергическом шоке, вызванном пенициллином, для немед­ленной помощи в качестве антидота применяется пенициллиназа (си­ноним - Neutropen).

Особенности противовирусного иммунитета

Характер иммунитета при вирусных инфекциях связан с особен­ностями вирусов как строгих внутриклеточных паразитов.

Неспецифическая противовирусная резистентность обусловлена

такими механизмами, как:

1) отсутствие в организме чувствительных клеток к данному вирусу;

2) наличие неспецифических вирусных ингибиторов;

3) повышенная температура тела;

4) интерферон - один из основных противовирусных факторов за­щиты.

Фагоцитоз в отношении вирусов имеет меньшее значение, чем в отношении бактерий и часто бывает незавершенным.

Специфические противовирусные антитела могут нейтрализо­вать внеклеточные формы - вирионы, препятствуя их проникнове­нию в клетки организма. Против внутриклеточных форм вирусов антитела неэффективны. Существенную роль играют секреторные SIgA, создающие местный иммунитет в воротах инфекции, напри­мер, при гриппе. Сывороточные антитела, циркулирующие в кровя­ном русле, играют защитную роль при вирусемии.

В противовирусном иммунитете действует особый механизм. Клет­ки, зараженные вирусом, имеют на своей поверхности антигенные де­терминанты. Поэтому они становятся мишенями для цитотоксических лимфоцитов - Т-киллеров. При этом зараженные клетки погибают вме­сте с вирусом. Например, при вирусном гепатите В происходит гибель гепатоцитов, зараженных вирусом.

Иммунодефицитные состояния

Иммунодефицитами называют неполноценное функционирование иммунной системы. Иммунодефицитные состояния разделяют на пер­вичные (врожденные) и вторичные (приобретенные).

Врожденные иммунодефициты связаны с генетическими дефектами развития иммунной системы. Дефекты В-снстемы ведут к пониженной выработке или полному отсутствию Ig-глобулинов. Чаще наблюдает­ся избирательная недостаточность SIgA, что ведет к снижению мест­ной защиты слизистых оболочек. Преимущественные дефекты Т-системы - это недоразвитие тимуса, которое обусловливает недостаточ­ность клеточного иммунитета. Тяжелые последствия вызывают комби­нированные дефекты Т- и В-системы. Наблюдаются также избиратель­ные дефекты фагоцитов и дефекты системы комплемента.

Вторичные (приобретенные) иммунодефициты развиваются при мно­гих бактериальных и вирусных инфекциях, при болезнях, сопровожда­ющихся потерей белка (ожоги, болезни почек), при применении с ле­чебной целью рентгеновских лучей или иммуносупрессивных средств. Причинами развития вторичных иммунодефицитов могут быть диабет, ожирение, атеросклероз, истощение.

Приобретенные иммунодефициты инфекционной природы воз­никают вследствие размножения возбудителей непосредственно в клетках иммунной системы. Вирус иммунодефицита человека реп­родуцируется в Т-хелперах и макрофагах, и при этом страдают и клеточный, и гуморальный иммунитет, поскольку Т-хелперы явля­ются регуляторами иммунного ответа.

Иммунодефицитные состояния способствуют возникновению ин­фекций, вызванных условно-патогенными микроорганизмами, и развитию опухолей. Например, у больных СПИДом часто развива­ется саркома Капоши или пневмония, вызванная Pneumocysta carinii - микроскопическим грибом, который у людей с нормальным уров­нем иммунитета не вызывает заболевания.

Оценка иммунного статуса организма

Иммунодефицитные состояния, так же, как и состояние избы­точного реагирования иммунной системы (аллергические реакции и аутоиммунные процессы) поддаются лечению и коррекции. Однако та­кое лечение может проводиться только после оценки иммунного ста­туса организма. Исследование начинается с ориентировочного кли­нического этапа, на котором собирается иммунологический анамнез: инфекционные заболевания в прошлом, их течение, наличие очагов хронической инфекции. Проводится клинический анализ крови: коли­чество полиморфноядерных лейкоцитов, лимфоцитов, моноцитов, Вы­является носительство бактерий или вирусов.

В иммунологической лаборатории проводится исследование с ис­пользованием тестов 1-го и 2-го уровней.

Тесты 1-го уровня позволяют выявить грубые нарушения иммун­ной системы. Определяются следующие показатели:

- процентное содержание и абсолютное количество Т- и В-лим-фоцитов;

- концентрация сывороточных IgM, IgG, IgA: уровень сыворо­точных иммуноглобулинов отражает состояние В-системы иммуните­та;

- для оценки факторов неспецифической защиты организма оп­ределяют фагоцитарную активность нейтрофилов крови и уровень ком­племента крови.

Тесты 2-го уровня позволяют уточнить характер выявленного де­фекта. К тестам 2-го уровня относится: определение соотношения Тх/Тс, оценка функциональной активности субпопуляций Т-лимфоцитов и др.

Иммунофармакологические средства

Нарушения иммунной системы можно устранять с помощью им-мунофармакологических средств, направленных на стимуляцию или угнетение иммунной системы или отдельных ее компонентов.

Иммуностимулирующим действием обладают следующие группы веществ:

1) гормоны иммунной системы: гормоны тимуса (тактивин, тима-

лин), стимулирующие Т-систему лимфоцитов; гормоны костного мозга (миелопиды), стимулирующие В-систему лимфоцитов;

2) медиаторы иммунной системы - интерлейкины: лимфокины, монокины, интерферон, фактор некроза опухолей (ФНО);

3) лекарственные средства: левамизол (декарис), целый ряд про-теолитических ферментов: террилитин, стрептолиаза; сосудорас­ширяющие средства: дибазол, курантил, эуфиллин; нуклеинат натрия, пирогенал, продигиозан.

Эффективным методом иммуностимуляции является экстракорпоральная иммунофармакотерапия. Один из методов заключается в том, что полученные от пациента клетки, способные продуцировать ин­терлейкины, обрабатывают иммуномодулирующим веществом, напри­мер, диуцифоном или фосфолипидами и затем вновь вводят пациенту.

Иммуносупрессивные средства применяются в тех случаях, когда возникает необходимость в подавлении иммунитета, например, при трансплантации, при аутоиммунных заболеваниях. Иммуносупрессивным действием обладают некоторые гормональные препараты и лекарственные средства: циклоспорин А, азатиоприн, батрпден, сали-цилаты, антилимфоцитарная сыворотка. Иммуносупрессивным действием обладают также стероидные гормоны, применение кото­рых может проводиться только по строгим показаниям.

Становление и развитие иммунной системы в онтогенезе

Начальные этапы онтогенеза. Индивидуальное развитие организма начинается с момента оплодотворения яйцеклетки сперматозоидом огца. Образуется зигота, из которой развивается зародыш, поровну наследующий геном родителей. Следовательно, он в генетическом от­ношении не является идентичным ни матери, ни отцу. По законам им­мунологии материнская иммунная система должна препятствовать им­плантации оплодотворенной яйцеклетки. Поэтому дальнейшее разви­тие зародыша возможно благодаря сложной системе защиты его от иммунного ответа матери.

Доступ сперматозоида к яйцеклетке и слияние их возможны по­тому, что: 1) система местного иммунитета женского полового тракта не препятствует продвижению сперматозоидов; 2) женские половые пути отчасти изолированы от общего кровотока; 3) семенная жидкость со­держит вещества, подавляющие иммунные процессы.

В дальнейшем оплодотворенная яйцеклетка имплантируется в матке и не отторгается благодаря тому, что иммунная система бе­ременной женщины проявляет относительную толерантность к антигенам эмбриона. Функцию изоляции плода от иммунной систе­мы матери выполняет плацентарный барьер (трофобласт). Крово-ток матери и плода оказываются полностью изолированными друг от друга. Плацента и плод синтезируют белки и гормональные ве­щества, подавляющие реакцию отторжения. При нормально протекающей беременности в организме беременных вырабатываются факторы, угнетающие иммунный ответ против антигенов плода. В то же время способность женского организма формировать иммун­ный ответ против бактерий и вирусов во время беременности пол­ностью сохраняется.

У плода тимус закладывается на 6-7-й неделе внутриутробного раз­вития, формирование его заканчивается к концу 3-го месяца, в дальней­шем происходит увеличение коркового слоя. На 11-12-й неделе селезен­ка, костный мозг и печень заселяются лимфоцитами. Лимфатические узлы закладываются на 4-м месяце, но полностью формируются после рожде­ния. Т-лимфоциты появляются у плода на 40-й день, отвечают на анти­генное воздействие на 16-й неделе. Зрелые В-лимфоциты появляются на 12-15-й неделе, способность формировать гуморальный иммунный от­вет - с 10-12-й недели развития плода, причем образуются IgM.

Трансплацентарная передача антител осуществляется с помощью плацентарных клеток, которые поглощают белковые молекулы и пере­носят их в неизмененном виде. Переносятся только IgG, причем ин­тенсивность передачи регулируется концентрацией IgG у матери: при высоких концентрациях передача замедляется, при низких усиливается. Таким образом поддерживается постоянный уровень IgG в крови пло­да. Антитела класса IgM через плаценту не проходят, поэтому ново­рожденные оказываются недостаточно защищенными от гра-мотрицательных микробов (кишечных палочек, сальмонелл).

Околоплодные воды обладают защитными свойствами, они почти всегда стерильны, в них обнаруживаются лизоцим, р-лизин, имму-ноглобулины.

Комплемент через плацентарный барьер не проникает. В тканях плода отдельные фракции появляются на 6-й неделе, в крови - на 10-й неделе, к 19-й неделе кровь содержит весь комплекс белков" комплемен­та, но при этом у новорожденных отмечается слабая опсоническая ак­тивность крови, с чем связана их чувствительность к инфекции.

Фагоцитирующие клетки появляются в печени плода на 2-м ме­сяце беременности. Фагоцитарная активность у них выражена слабо. При наличии инфекции количество их резко падает.

Период новорожденности. В этом периоде происходит интенсивное развитие механизмов иммунитета, которое определяет иммунный ста­тус в последующем. Исходный уровень компонентов иммунной сис­темы определяется в пуповинной крови.

Уже в первые часы после рождения организм ребенка сталкива­ется с разнообразной микрофлорой, заселяющей его кожу, дыхатель­ные пути, желудочно-кишечный тракт. В результате происходит сти­муляция лимфоидного аппарата и интенсивное его развитие. Резко повышается количество лимфоцитов. Уже на первой неделе жизни -физиологический лимфоцитоз, сохраняющийся до 5-6 лет.

У новорожденных слабо выражена активность Т-киллеров, а так­же реакции ГЗТ, выявляемые аллергическими кожными пробами. Ос-

лаблены процессы активации комплемента, продукции интерлейкинов и интерферона.

Количество В-лимфоцитов у новорожденных выше, чем у взрос­лых, но функция их слабее. Гуморальный иммунитет новорожденного зависит от материнских IgG, которые защищают от вирусов полиоми­елита, кори, краснухи, от менингококков, стрептококков, бордетелл коклюша, коринебактерий дифтерии, клостридий столбняка.

Слабая фагоцитарная активность лейкоцитов связана в основном с недостатком опсонинов.

Концентрация лизоцима в пуповинной крови выше, чем у матери. В первые три дня количество его нарастает, к концу первой недели снижается до уровня лизоцима у взрослых.

Грудное молоко содержит не только необходимые питательные ве­щества в оптимальных для ребенка соотношениях, но и такие защитные факторы, как систему комплемента в стимулированной форме, лизоцим, антитела, гормоны, ферменты. Антитела относятся в основном к секреторным SIgA.

Грудное вскармливание защищает от инфекций в наиболее уяз­вимом возрасте. В условиях стационара грудное вскармливание пре­дохраняет ребенка от внутрибольничных инфекций.

Реакции иммунитета

В основе реакций иммунитета лежит специфическое взаимодейс­твие между антигеном и антителами. Реакции происходят в том слу­чае, если антиген и антитела соответствуют, специфичны друг для дру­га. Следовательно, реакции иммунитета можно использовать в двух направлениях: 1) с помощью известных антигенов определить наличие антител в сыворотке крови больного и 2) с помощью известных антител, которые содержатся в иммунной сыворотке, определить вид и тип микроорганизма.

Поскольку в реакциях иммунитета участвует сыворотка, их на­зывают серологическими (лат. serum - сыворотка).

Процесс взаимодействия антигена и антитела происходит в две фазы. Первая фаза - это специфическое соединение антигена и антител, вторая - неспецифическая, видимая фаза, происходит обычно в при­сутствии электролитов. Видимое проявление зависит от антигена: если это корпускулярный антиген, например, микробы, то образуются хло­пья (агглютинация), если антиген растворимый (молекулярно-дисперс-ный), например, белки или полисахариды, то образуется осадок (пре­ципитация)

Реакция нейтрализации токсина антитоксином

В этой реакции антигеном является экзотоксин, антителами - анти­токсины. При их взаимодействии происходит нейтрализация токсина. Реакцию ставят в пробирках для определения силы антитоксической сыворотки. Внешнее проявление реакции - флоккуляция (помутнение). Для обнаружения токсина с диагностической целью при ботулизме, столбняке, газовой анаэробной инфекции ставят реакцию нейтрали­зации токсина антитоксином в биологическом опыте на животных.

Реакция агглютинации

Реакция агглютинации - склеивание бактерий под влиянием спе­цифических антител. Реакция протекает в две фазы. В первой фазе происходит специфическое присоединение антител к поверхности клет­ки, во второй - образование хлопьев в присутствии электролита (хло­рида натрия). Видимая реакция происходит в том случае, если антите­ла имеют два активных центра, к каждому их них присоединяется анти­ген, и в результате образуется "решетка".

Методы постановки реакции агглютинации:

1) развернутая реакция агглютинации ставится в пробирках с пос­ледовательными разведениями сыворотки;

2) реакция агглютинации на предметном стекле в капле сыворотки, разведенной 1:5 - 1:10; наступает в течение нескольких минут.

Для определения антигенной структуры микробов, выделенных из организма пациента, используют агглютинирующую сыворотку, полу­ченную из крови животного (кролика, барана), иммунизированного этими микробами. Титром диагностической агглютинирующей сыво­ротки называется наибольшее ее разведение, которое вызывает агг­лютинацию.

Если агглютинирующая сыворотка содержит антитела против Н-антигена, то подвижные бактерии склеиваются своими жгутиками, об­разуются рыхлые хлопья. Это крупнохлопчатая агглютинация, нас­тупающая быстро - в течение двух часов.

Сыворотка, содержащая О-агглютинины, вызывает мелкозернис­тую агглютинацию в течение 18-24 часов.

Агглютинирующие сыворотки, полученные путем иммунизации жи­вотных микробами, могут содержать антитела против родственных микробов, то есть являются поливалентными. Для повышения специ­фичности сывороток из них удаляют групповые антитела методом ад­сорбции по Кастелляни, с помощью групповых антигенов. Получен­ные сыворотки называют адсорбированными. Оставляя антитела толь­ко к одному антигену, получают монорецепторные сыворотки. С таки­ми сыворотками ставят реакцию агглютинации на стекле, которая в этом случае является окончательной, а не ориентировочной.

Для обнаружения антител в сыворотке крови пациента в качестве известного антигена используют убитые культуры микробов, так на­зываемые диагностикумы. При постановке серологического диагно­за учитывают диагностический титр сыворотки - для большинства заболеваний 1:100 или 1:200.

Реакции непрямой или пассивной гемагглютинации.

Реакция непрямой или пассивной гемагглютинации (РНГА или РПГА) более чувствительна и специфична, чем реакция агглютинации. Эту реакцию также используют в двух направлениях.

1) Для обнаружения антител в сыворотке крови больного приме­няются эритроцитарные диагностикумы, в которых антиген адсорби­рован на поверхности обработанных танином эритроцитов. В отноше­нии этой реакции чаще употребляют термин РПГА.

Исследуемую сыворотку разводят в лунках пластмассовых план­шетов и добавляют эритроцитарный диагностикум. При положитель­ной реакции появляется тонкая пленка по стенкам лунки в виде "кру­жевного зонтика», при отрицательной реакции - плотный осадок эрит­роцитов в виде "пуговки".

2) Для обнаружения токсинов и бактериальных антигенов в исс­ледуемом материале применяют антительные эритроцитарные диагнос­тикумы, полученные путем адсорбции антител на эритроцитах. В от­ношении этой реакции чаще употребляется термин РНГА. Например, с помощью антительных диагностикумов обнаруживают антиген па­лочки чумы, дифтерийный экзотоксин, ботулинический экзотоксин.

Реакция Кумбса (аптиглобулиновый тест)

Реакцию применяют для выявления неполных антител, например, антител к резус-фактору. К Rh+ эритроцитам добавляют исследуемую сыворотку, в которой предполагается присутствие неполных антител к резус-фактору. Присоединившись к эритроцитам, неполные антите­ла не вызывают агглютинации, так как имеют только один активный центр. Затем добавляют антиглобулиновую сыворотку, содержащую антитела к глобулинам человека. Соединившись с неполными антите­лами, антиглобулиновая сыворотка вызывает агглютинацию эритроци­тов.

Реакция преципитации

Сущность реакции состоит в осаждении (преципитации) антигена под действием специфических антител. Для получения видимой реак­ции необходимо присутствие электролита. Антигеном в реакции пре­ципитации являются молекулярно-дисперсные вещества.

Реакция кольцепреципитации ставится в узких преципитационных пробирках. В пробирку наливают иммунную сыворотку, на нее осто­рожно наслаивают исследуемый материал. При наличии в нем антигена на границе двух жидкостей образуется непрозрачное кольцо преципи­тата.

Реакцию применяют в судебной медицине для определения видо­вой принадлежности белков в кровяных пятнах, в сперме и т.д.; для определения антигена при диагностике сибирской язвы (реакция Асколи), менингита и других инфекций; в санитарно-гигиенических ис­следованиях - для установления фальсификации пищевых продуктов. Иммунные преципитирующие сыворотки получают путем иммуниза­ции животных соответствующим антигеном. Например, сыворотка, преципитирующая белок человека, получена путем иммунизации кро­лика белком человека. Титр преципитирующей сыворотки - это наи­большее разведение антигена, с которым она дает реакцию. Сыворотку обычно применяют неразведенной или в разведении 1:5.

Реакция преципитации в агаровом геле проводится несколькими ме­тодами. Это реакция двойной иммунодиффузии, реакция радиальной иммунодиффузии, реакция иммуноэлектрофореза.

Реакция двойной иммунодиффузии (по Оухтерлони). Растопленный агаровый гель выливают в чашку Петри и после затвердевания в нем вырезают лунки. В одни лунки помещают антиген, в другие - иммун­ные сыворотки, которые диффундируют в агар, образуют в месте встре­чи преципитат в виде белых полос.

Реакция радиальной иммунодиффузии (по Манчини). В растоп­ленный агаровый гель вносят иммунную сыворотку, выливают в чашку. После застывания агара в нем вырезают лунки и помещают в них антигены, которые, диффундируя в агар, образуют кольцевые зоны преципитации вокруг лунок. Чем выше концентрация антиге­на, тем больше диаметр кольца. Реакцию применяют, например, для определения в крови иммуноглобулинов различных классов. Иммуноглобулины классов IgG, IgM, IgA действуют в этой реакции как антигены, а антитела против них содержатся в специфических мо-норецепторных сыворотках.

Иммуноэлектрофорез. В агаровом геле проводят электрофорез белковых антигенов. В канавку, которая идет параллельно направ­лению движения белков, вносят преципитирующую сыворотку. Антигены и антитела диффундируют в агар, и в месте их встречи образуются линии преципитации.

Реакции иммунного лизиса

Антиген (эритроциты или бактерии), соединившись со специфи­ческими антителами, образует иммунный комплекс, к которому при­соединяется комплемент (С1), и происходит активация комплемента по классическому пути. Активированный комплемент лизирует эрит­роциты (гемолиз) или бактерии (бактериолиз). Реакция бактериолиза применяется для идентификации холерного вибриона.

Реакция гемолиза. Антигеном в реакции служат эритроциты, ан­титела (гемолизины) содержатся в гемолитической сыворотке. Гемолизины присоединяются к эритроцитам, происходит активация комплемента, который лизирует эритроциты. Мутная взвесь эритро­цитов превращается в прозрачную ярко-красную жидкость - «лако­вую кровь». Поскольку реакция гемолиза происходит только в присутствии комплемента, ее применяют как индикаторную для об­наружения комплемента.

Реакция локального гемолиза в геле (реакция Ерне) - вариант ре­акции гемолиза. Служит для определения количества антителообразующих клеток (АОК) в селезенке и лимфатических узлах.

Растопленный агаровый гель смешивают с суспензией клеток селезенки и эритроцитами и после застывания агара добавляют ком­племент. Вокруг каждой клетки, продуцирующей гемолизины, об­разуется зона гемолиза. По числу таких зон определяют количество клеток, продуцирующих гемолизины.

Реакция связывания комплемента

Реакция связывания комплемента (РСК) ставится в две фазы: в пер­вой фазе антиген соединяют с исследуемой сывороткой, в которой пред­полагают наличие антител, и добавляют комплемент, инкубируют в термостате 30 минут или 18-20 часов в холодильнике.

Вторая фаза: добавляют гемолитическую систему (эритроциты ба­рана + гемолитическая сыворотка). После инкубации в термостате в течение 30 минут учитывают результат.

При положительной РСК антитела сыворотки, соединившись с ан­тигеном, образуют иммунный комплекс, который присоединяет к себе комплемент, и гемолиза не произойдет. Если реакция отрицательная (антител в исследуемой сыворотке нет), комплемент останется свобод­ным, и произойдет гемолиз.

РСК применяется для серологической диагностики сифилиса, го­нореи, сыпного тифа и других заболеваний.

РСК можно применять и для определения антигена, например, ви­руса. В этом случае в качестве антител применяется диагностическая иммунная сыворотка.

В качестве комплемента для РСК применяется сыворотка крови морской свинки. Гемолитическую сыворотку получают из крови кро­ликов, иммунизированных эритроцитами барана.

Реакции с участием меченых антигенов или антител

Реакции основаны на использовании меченых иммунореагентов. Помечены могут быть антигены, антитела или антиглобулиновая сы­воротка. В качестве метки используют флюоресцентные красители (РИФ), ферменты (ИФА), радиоизотопы (РИА), электронноплотные со­единения (ИЭМ).

Реакция иммунофлюоресценции (РИФ), реакция Кунса. Это метод экспресс-диагностики. Для постановки РИФ применяются иммунные сыворотки, меченные флюорохромными красителями, например, изоти-оцианатом флюоресцеина. Флюорохромы вступают в химическую связь с сывороточными белками, не нарушая их специфичности.

Прямой метод РИФ. Из исследуемого материала, в котором предполагается наличие антигена (например, холерного вибриона), гото­вят препарат-мазок и обрабатывают его флюоресцирующей сыворот­кой, содержащей антитела к данному антигену (в нашем случае - про­тивохолерной сывороткой). При микроскопии в люминесцентном мик­роскопе наблюдают светящиеся микробы.

Недостатком прямого метода РИФ является необходимость иметь боль­шой набор флюоресцирующих сывороток против каждого антигена.

Непрямой метод РИФ. Препарат-мазок обрабатывают иммунной кроличьей антисывороткой к антигену (противохолерной кроличьей сывороткой), а затем - флюоресцирующей антиглобулиновой сыворот­кой, содержащей антитела против глобулинов кролика. Затем наблю­дают в люминесцентном микроскопе светящиеся микробы.

При использовании этого метода можно иметь одну флюоресци­рующую сыворотку против глобулинов кролика.

Иммуноферментный анализ (ИФА). Как и другие реакции иммуни­тета, ИФА используется 1) для определения неизвестного антигена с помощью известных антител или 2) для выявления антител в сыворот­ке крови больного с помощью известного антигена. Особенность реак­ции в том, что известный ингредиент реакции соединен с ферментом, и его присутствие определяется с помощью субстрата, который при дей­ствии фермента окрашивается.

Наиболее широко применяется твердофазный ИФА.

1) Обнаружение ан­тигена (рис. 20). Первый этап - адсорбция специ­фических антител на твердой фазе, в качестве которой используют по­листироловые или поливинилхлоридные поверхности лунок пла­стиковых панелей.

Второй этап - добав­ление исследуемого ма­териала, в котором пред­полагается наличие ан­тигена. Антиген связы­вается с антителами. После этого луночки промывают.

Третий этап - добав­ление специфической сы­воротки, содержащей антитела против данно­го антигена, меченые ферментом. В качестве

фермента используют пероксидазу или щелочную фосфатазу. Мече­ные антитела присоединяются к антигенам, а их избыток удаляется промыванием. Таким образом, в случае присутствия в исследуемом ма­териале антигена на поверхности твердой фазы образуется комплекс антитело-антнген-антитела, меченные ферментом. Для обнаружения фермента добавляют субстрат. Для пероксидазы субстратом служит ортофенилдиамин в смеси с Н2О2 в буферном растворе. При действии фермента образуются продукты, имеющие коричневую окраску, ин­тенсивность которой позволяет количественно определить результаты опыта фотометрированием.

2) Обнаружение антител (рис. 21). Первый этап - адсорбция специ­фических антигенов на стенках лунки. Обычно в коммерческих систе­мах антигены уже адсорбированы на поверхности твердой фазы - в лунках или на пластиковых шариках.

Второй этап - добавление исследуемой сыворотки. При наличии антител образуется комплекс антиген-антитела.

Третий этап - после отмывания лунок добавляют антиглобулиновые антитела (антитела против глобулинов человека), меченные ферментом.

Результаты реакции учитывают, как указано выше.

В качестве контролей используют образцы заведомо положи­тельные и заведомо отрицательные.

Разрабатываются "безреагентные" системы для ИФА, в которых все компоненты реакции со­единены с поверхностью полимера. Для проведе­ния анализа необходимо внести исследуемый мате­риал и наблюдать измене­ние окраски.

ИФА применяется при многих инфекционных заболеваниях, в час­тности, при ВИЧ-инфекции, при вирусных гепати­тах.Иммуноблоттинг - это вариант ИФА, сочетание электрофореза и ИФА. Методом электрофореза в геле, содержащем фермен­ты, разделяют биополиме­ры, например, антигены вируса иммунодефицита человека. Затем церено-

Лечебные и профилактические препараты Вакцины

Иммунобиологические медицинские лечебные и профилактические препараты служат для профилактики и лечения больных инфекцион­ными заболеваниями путем создания искусственного иммунитета.

Вакцины - препараты, содержащие антигены и предназначенные для создания в организме искусственного активного иммунитета. Вве­дение вакцины в организм называют вакцинацией. Вакцины приме­няют чаще для профилактики, реже - для лечения.

В зависимости от природы антигена, который они содержат, вак­цины разделяют на живые, убитые, химические, анатоксины, ас­социированные.

Вакцины и анатоксины с уменьшенной дозировкой антигена (БЦЖ-м, АД-м и другие) применяют для вакцинации и ревакцинации при на­личии противопоказаний к прививкам полной дозой антигена.

Вакцины против одной инфекции называют моновакцинами, про­тив двух, трех, нескольких - соответственно дивакцинами, тривакцинами, поливакцинами.

Поливалентными называют вакцины, содержащие несколько серо­логических вариантов возбудителей одного вида, например, проти­вогриппозные вакцины типов А и В.

Живые вакцины готовят из живых микроорганизмов, вирулентность которых ослаблена, а иммуногенные свойства сохранены. Научные основы получения вакцинных штаммов разработал Л. Пастер, уста­новив возможность искусственного ослабления вирулентности пато­генных микробов.

Для получения вакцинных штаммов применялись разные спосо­бы.

1) Выращивание на питательных средах, неблагоприятных для роста и размножения возбудителя. Так, французские микробиологи А. Кальметт и Г. Герен получили вакцинный штамм микобактерий ту­беркулеза (БЦЖ) путем культивирования возбудителей на питатель­ной среде, содержащей желчь.

2) Пассажи возбудителя через организм животных Таким спосо­бом Л. Пастер получил вакцину против бешенства. Многократные пассажи привели к тому, что вирус адаптировался к организму кро­лика, возросла его вирулентность для кроликов и снизилась вирулент­ность для человека.

3) Отбор естественных культур микроорганизмов, маловирулентных для человека. Так были получены вакцины против чумы, бруцел­леза, туляремии, полиомиелита и др.

Живые вакцины имеют ряд преимуществ по сравнению с убитыми вакцинами. Размножение в организме человека вакцинного штамма микробов приводит к развитию вакцинальной инфекции - доброка­чественно протекающего процесса, приводящего к формированию специфического иммунитета. Живые вакцины вводятся более простыми способами (перорально, интраназально, накожно, внутрикожно) и, как правило, однократно. Благодаря способности вакцинного штамма размножаться в организме и оказывать длительное антигенное воз­действие создается напряженный, стойкий иммунитет.

Для сохранения стабильности живые вакцины выпускают в виде лиофилизированных препаратов. Хранить их следует в холодильнике, при температуре 4°-8°С в течение всего срока хранения, а также при транспортировке вакцин. В противном случае жизнеспособность вакцинного штамма может быть утеряна, и прививки не дадут нужно­го эффекта.

При проведении прививок живыми вакцинами соблюдаются опре­деленные правила. За один-два дня до введения вакцины и в течение недели после вакцинации не следует применять антимикробные пре­параты, иммунные сыворотки, иммуноглобулины. Для введения вак­цины нельзя употреблять горячие инстументы. Вскрытую ампулу упот­реблять немедленно или в течение 2-3 часов; защищать от солнечных лучей и нагревания. Кожу обрабатывать летучими веществами, на­пример, спиртом, и вакцину вводить после его испарения; не приме­нять с этой целью йод, карболовую кислоту и другие соединения, кото­рые задерживаются на коже. Оставшуюся неиспользованной или заб­ракованную вакцину не выливать, а предварительно убить. Местную реакцию на введение вакцины не лечить антибактериальными сред­ствами.

Живые вакцины не рекомендуется применять при иммунодефицит-ных состояниях (например, при лучевой болезни), на фоне которых вакцинные штаммы могут вызвать инфекционные осложнения.

Живые вакцины применяются для профилактики следующих забо­леваний: туберкулез, чума, туляремия, бруцеллез, сибирская язва, корь, оспа, паротит, полиомиелит, желтая лихорадка.

Убитые (инактивированные) вакцины содержат бактерии, вирусы, инактивированные прогреванием, УФ-лучами, формалином, фенолом, спиртом. Для получения убитых вакцин используют штаммы, полно­ценные по иммуногенности. Инактивацию проводят так, чтобы на­дежно убить микробы, не повредив антигенных свойств.

Заболевания, для профилактики которых применяют убитые вак­цины: лептоспироз, коклюш, грипп, бешенство, клещевой энцефалит.

Прививки убитыми вакцинами проводятся двукратно или троек­ратно; иммунитет менее продолжительный.

Вакцинотерапия. Вакцины из убитых микробов применяются для лечения больных хроническими вялотекущими инфекционными забо­леваниями, такими, как бруцеллез, хроническая дизентерия, хроничес­кая гонорея, хронический рецидивирующий герпес, хронические ста­филококковые инфекции. Лечебный эффект при этом связан со стиму­ляцией фагоцитоза и иммунного ответа.

Лечение вакцинами проводится индивидуально, под врачебным наблюдением, так как вакцинотерапия нередко вызывает обострение инфекционного процесса.

В некоторых случаях для лечения применяют аутовакцины, кото­рые приготавливают из бактерий, выделенных от самого пациента.

Химические вакцины содержат извлеченные из микробных клеток и из вирусов антигены, обладающие протективным (защитным) дей­ствием. Таким образом, в отличие от живых и убитых вакцин, являю­щихся корпускулярными, химические вакцины не содержат микроб­ных клеток или цельных вирионов. Их можно назвать молекулярнодисперсными.

Преимуществом химических вакцин является то, что они не со­держат балластных веществ, они менее реактогенны, то есть вызывают меньше побочных реакций.

Примеры химических вакцин: брюшнотифозная - содержит О-антиген; холерная (О-антиген); менингококковая - содержит полисахаридный антиген; сыпнотифозная - содержит поверхностный раство­римый антиген из риккетсий Провацека. Вирусные субъединичные (расщепленные) вакцины содержат наиболее иммуноленные антшены вирусов. Например, гриппозная вакцина (АГХ) содержит гемагглюти­нин и нейраминидазу.

Химические вакцины для повышения иммуногенности адсорбиру­ют на адъюванте (гидроксиде алюминия). Адъювант укрупняет антп-генные частицы, замедляет резорбцию антигена, удлиняя ею действие. Кроме того, адъювант является неспецифическим стимулятором иммун­ного ответа.

Анатоксины - препараты, полученные из бактериальных экзоток­синов, лишенных ядовитых свойств, но сохранившие иммуногеные свойства. Метод получения анатоксинов предложил в 1923 г. фран­цузский ученый Г. Рамон. Для приготовления анатоксина к экзотокси­ну прибавляют 0,3-0,4% формалина и выдерживают при температуре 37-40°С в течение 3-4 недель до полного исчезновения токсических

свойств.

Анатоксины выпускают в виде нагивных препаратов или в виде очищенных адсорбированных на адъювантах концентрированных препаратов.

Анатоксины применяют для создания искусственного активного антитоксического иммунитета. Применяются анатоксины, стафилокок­ковый нативный и очищенный адсорбированный, холероген-анатоксин; адсорбированный дифтерийный (АД, АД-м), дйфтерийно-столбнячный (АДС, АДС-м), трианатоксин (ботулинический типов А, В, Е), тетра-анатоксин (ботулинический типов А, В, Е и столбнячный).

Ассоциированные вакцины содержат антигены, разные по своей природе. Адсорбированная коклюшно-дифтерийно-столбнячная вак­цина (АКДС) содержит инактивированную коклюшную вакцину, диф­терийный и столбнячный анатоксины, адсорбированные на гидрокси­де алюминия.

Вакцины новых поколений. Это вакцины будущего, некоторые из них уже применяются.

1) Искусственные вакцины, составленные из детерминантных групп антигенов, соединенных с белком-носителем.

2) Генноинженерные вакцины. Методами генетической инженерии гены, ответственные за синтез антигена, встраиваются в геном бакте­рий, дрожжей, вирусов. Создана вакцина, содержащая антигены ви­руса гепатита В, продуцируемые рекомбинантными клетками дрож­жей; готовится генноинженерная вакцина против ВИЧ-инфекции из антигенов вируса, продуцируемых рекомбинантными штаммами Е. coli; вакцина из антигенов ВИЧ в составе вируса осповакцины.

3) Разрабатывается метод получения вакцин на основе антиидиотипических антител, то есть антител, специфичных к иммуноглобулину. Например, антитела против антитоксина могут иммунизировать животное или человека подобно токсину (или анатоксину).

Вакцины вводят накожно, внутрикожно, подкожно, внутримышеч­но, интраназально, перорально, ингаляционно. Для массовых приви­вок применяют безыгольную инъекцию с помощью автоматов пистолет­ного типа, а также пероральное введение вакцины и ингаляционный способ.

Система вакцинации для профилактики инфекционных болезней среди населения регламентируется календарем прививок, в котором определено проведение обязательных прививок для каждого возраста и прививок по показаниям.

При введении вакцин могут возникать местные и общие реакции. Общая реакция: повышение температуры до 38°-39°С, недомогание, го­ловная боль. Эти симптомы обычно проходят через 1-3 дня после при­вивки. Местно через 1-2 дня на месте инъекции могут появиться по­краснение и инфильтрация. Некоторые живые вакцины - оспенная, туляремийная, БЦЖ при внутрикожном введении вызывают характер­ные кожные реакции, что свидетельствует о положительном результа­те прививки.

Основные противопоказания к применению вакцин: острые ин­фекционные заболевания, активная форма туберкулеза, нарушение сер­дечной деятельности, функции печени, почек, эндокринные расс­тройства, аллергия, заболевания центральной нервной системы. Для каждой вакцины существует подробный перечень противопоказаний, приведенный в инструкции. В случае эпидемии или при угрожающих жизни показаниях (укус бешеным животным, случаи чумы) необходи­мо прививать и лиц с противопоказаниями, но под специальным меди­цинским наблюдением.

Иммунные сыворотки и аммуноглобулины

В течение многих инфекционных заболеваний в организме выра­батываются антитела, играющие защитную роль. Но накопление их в достаточном количестве наблюдается обычно через две-три недели от начала заболевания. Поэтому для специфического лечения и экстренной профилактики (при непосредственной угрозе заболевания) создают ис­кусственный пассивный иммунитет путем введения иммунных сыворо­ток или иммуноглобулинов.

По происхождению лечебные сыворотки делятся на гетерологичные (чужеродные) и гомологичные (полученные из крови человека).

Пассивный иммунитет создается быстро, так как введенные ан­титела немедленно оказывают защитное действие, но продолжается недолго. При введении чужеродных сывороток иммуноглобулины выво­дятся из организма через 1-2 недели, при введении гомологичных сы­вороток антитела сохраняются в организме в течение 4-5 недель.

По характеру содержащихся в них антител лечебные сыворот­ки можно разделить на антитоксические, антибактериальные, противовирусные.

Антитоксические сыворотки получают путем многократной имму­низации (гипериммунизации) лошадей, от которых можно получить до­статочно большое количество крови. Иммунизацию проводят сначала анатоксином, затем токсином. Сыворотку крови подвергают очистке от балластных белков методом ферментирования и диализа ("Диаферм").

Силу антитоксических сывороток измеряют в международных еди­ницах (ME) по способности нейтрализовать определенную дозу ток­сина. При практическом применении антитоксических сывороток их назначают не в весовых или объемных единицах, а в ME.

Сыворотки вводят внутримышечно, подкожно, иногда внутривен­но. Поскольку антитоксические сыворотки являются гетерологичными, введение их производится по Безредка (см. "Аллергия").

Наиболее эффективно раннее применение лечебных сывороток, когда токсин еще не связался с чувствительными клетками.

Антитоксические сыворотки применяются при токсинемических инфекциях. На практике используются сыворотки: противодифтерий­ная, противостолбнячная, противоботулиническая, противогангренозная.

Антибактериальные сыворотки получают гипериммунизацией ло­шадей соответствующими вакцинами. Применение антибактериальных сывороток ограничено ввиду их малой эффективности.

Более широко применяются противовирусные сыворотки.

Иммуноглобулины. Для очистки и концентрации иммунных сы­вороток используют метод, основанный на разделении белковых фракций сывороток и выделении активных иммуноглобулинов-эти­ловым спиртом при низкой температуре (метод водно-спиртового осаждения на холоде). Препараты иммуноглобулинов для внутри­венного введения получают путем ферментативного гидролиза с химической модификацией, с использованием более мягких, по срав­нению с этанолом, осадителей, ионообменной хроматографией.

Исходным материалом для получения гетерологичных иммуноглобулинов служит сыворотка или плазма крови гиперим­мунизированных животных. Таким образом получены иммуногло-булины: противосибиреязвенный, лептоспирозный, антирабический (против бешенства), против клещевого энцефалита. Преимуществом гетерологичных иммуноглобулинов является возможность получения препарата с более высоким титром антител, недостатком - риск ал­лергических реакций, в связи с чем эти препараты вводят по Безред­ка.

Материалом для приготовления гомологичных иммуноглобулинов служит плазма крови человека. Нормальный иммуноглобулин, называ­емый также противокоревым, получают из крови доноров или плацен­тарной крови. Поскольку исходным сырьем при промышленном изго­товлении иммуноглобулина является плазма большого числа доноров (не менее 5000 человек), препараты содержат широкий набор анти­бактериальных, антитоксических и противовирусных антител. Нор­мальный иммуноглобулин используется для экстренной профилактики и лечения кори, коклюша, менингококковой инфекции, полиомиелита, скарлатины, гепатита, а также во всех случаях иммунодефицитных состояний, связанных с недостаточностью антител.

Нормальные иммуноглобулины обладают способностью связы­вать гистамин (гистаминопексия). Эта способность снижена у боль­ных бронхиальной астмой. На практике применяются препараты -аллерглобулин и гистоглобулин для лечения больных бронхиальной астмой, экземой, нейродермитами.

Нормальный иммуноглобулин для внутримышечного введения представляет собой 10-16% белковый раствор, для внутривенного введения - 5% раствор.

Донорские иммуноглобулины направленного действия получа­ют или путем отбора образцов донорской крови с высоким титром соответствующих антител, или путем предварительной иммуниза­ции доноров. Применяются иммуноглобулины направленного дей­ствия для экстренной профилактики и лечения столбняка, клещево­го энцефалита, гриппа, стафилококковой инфекции.

В качестве средств для создания пассивного иммунитета воз­можно применение препарата, полученного из сыворотки молока иммунизированных коров. Например, лактоглобулин, полученный из сыворотки молока коров, иммунизированных дизентерийными палочками, применяется путем, приема внутрь для лечения детей, больных дизентерией.

В будущем возможно применение для создания пассивного имму­нитета моноклональных антител, полученных с помощью гибридом из клеток человека. Такие препараты будут максимально специфич­ны при минимальном риске осложнений.

1   ...   6   7   8   9   10   11   12   13   ...   24


написать администратору сайта