Главная страница
Навигация по странице:

  • Взаимодействие бактериофага с бактериальной клеткой

  • Адсорбция бактериофага.

  • Внедрение фага внутрь клетки.

  • Синтез ДНК и белка бактериофага.

  • Практическое значение бактериофагов

  • ГЛАВА 8. ЭКОЛОГИЧЕСКАЯ МИКРОБИОЛОГИЯ (МИКРОЭКОЛОГИЯ)

  • Микроорганизмы пищевых продуктов

  • Микрофлора различных объектов

  • Роль микроорганизмов в круговороте веществ в природе, в возникновении и существовании биосферы

  • Круговорот углерода.

  • Круговорот серы, фосфора, железа

  • Микробиологические аспекты охраны окружающей среды

  • Первая. Общая микробиология. Глава место микроорганизмов среди других живых существ классификация и


    Скачать 1.23 Mb.
    НазваниеПервая. Общая микробиология. Глава место микроорганизмов среди других живых существ классификация и
    Анкорlektsii_po_mikre.doc
    Дата09.03.2018
    Размер1.23 Mb.
    Формат файлаdoc
    Имя файлаlektsii_po_mikre.doc
    ТипДокументы
    #16466
    страница4 из 24
    1   2   3   4   5   6   7   8   9   ...   24
    ГЛАВА 7. БАКТЕРИОФАГИ И БАКТЕРИОФАГИЯ
    Явление бактериофагии открыл и изучил французский микробио­лог д'Эррель. В 1917 г. он наблюдал лизис культуры бактерий дизентерии после внесения в нее фильтрата испражнений больного, выздоравлива­ющего от дизентерии. При многократных пассажах, то есть переносе из одной культуры в другую, фильтраты сохраняли свою лизирующую ак­тивность и даже усиливали ее. Ученый сделал из этого правильный вы­вод о том, что лизирующий агент - живой и при пассажах размножается в бактериях. Д'Эррель назвал этот агент бактериофагом (лат. phagos -пожирающий), а само явление лизиса - бактериофагией.

    Позже было подтверждено, что бактериофаг - живой. Это вирус бак­терий, он размножается в бактериях, вызывая их лизис. Добавление бак­териофага в культуру бактерий на жидкой питательной среде вызывает просветление среды. На плотных питательных средах при посеве смеси бактерий и бактериофага на фоне сплошного роста бактерий появля­ются стерильные пятна или негативные колонии фагов (рис. 8).

    Бактериофаг и специфичны, то есть лизируют определенные виды бактерий. Отсюда их названия: дизентерийный бактериофаг, стафи­лококковый бактериофаг. Обнаружены фаги не только бактерий, но и актиномицетов.

    В практической медицине бактериофаги нашли применение как лечебные и профилактические средства,

    Важное значение имеет то, что на примере бактериофагии были открыты и изучены многие проблемы общей вирусологиии и молекуляр­ной генетики.

    Структура бактериофагов

    Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встре­чаются и лучше изучены бактериофаги, имеющие форму сперматозои­да или головастика. Состоят они из головки, хвостового отростка, батальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спи­рально скрученная пить ДНК, по­крытая белковым капсидом. Хвостовой отросток - что полый цилиндрический стержень, окру­женный сократительным чехлом. Базальная пластинка и нити осу­ществляют процесс адсорбции бактериофага на бактериальной клетке (рис. 9). Существуют бакте-риофаш. имеющие другое строе­ние: с короткими отростком, с отростком без сократительного чехла, без отростка, нитевидной формы.

    Взаимодействие бактериофага с бактериальной клеткой

    Как все вирусы, бактериофаги не размножаются на питательных средах. Их размножение происходит только в чувствительных к ним бактериальных клетках, в процессе взаимодействия, в котором наб­людаются те же фазы, что при взаимодействии других вирусов с клет­кой.

    Адсорбция бактериофага. Как все вирусы, фаги неподвижны, и стол­кновение с бактерией происходит случайно, затем адсорбция стано­вится прочной, если у клетки имеются на поверхности фагос-пецифические рецепторы. Фаги, имеющие сократительный чехол, ад­сорбируются с помощью хвостового отростка.

    Внедрение фага внутрь клетки. Под дей­ствием фермента лизо-цима, который находится в хвостовом сегменте, в клеточной стенке бакте­рии образуется отверстие. Через это отверстие в ре­зультате сокращения хво­стового чехла внутрь бак­териальной клетки переходит ДНК фага. Белковый капсид остает­ся снаружи.

    Синтез ДНК и белка бактериофага. В клетке прекращается синтез бактериальных белков. Образуются фаговые ДНК, а на рибосомах бактерий синтезируются молекулы фагового белка.

    Формирование фага. Сборка зрелых фагов из ДНК и капсида про­исходит в цитоплазме клетки. Выход зрелых фагов из клетки происхо­дит при разрушении бактерий с помощью лизоцима, а затем зрелые фаги внедряются в новые клетки.

    "Урожай" фага, в зависимости от его вида, составляет от 20 до 200 частиц. Весь цикл взаимодействия, занимающий от 10 минут до нескольких часов, называется литическим циклом, а фаг при таком вза­имодействии - вирулентным.

    В отличие от вирулентных, умеренные фаги не лизируют бактерии. Их геном, проникнув в клетку, встраивается в хромосому бактерии и в дальнейшем остается в хромосоме в виде профага и реплицируется вме­сте с ней. Бактерии, несущие профаг, называются лизогенными, а само явление - лизогенией. Лизогенные бактерии встречаются очень часто. Профаг, находясь в геноме бактерии, придает ей какие-либо новые свой­ства. Так, например, продукция экзотоксина у палочек дифтерии и бо­тулизма связана с наличием профага.

    В определенных условиях (воздействия температуры, химических веществ и др.) профаги могут превратиться в вирулентные бактерио­фаги. Размножаясь, они лизируют бактерии и могут переходить в дру­гие бактериальные клетки. При выходе из хромосомы профаг может захватить соседние гены бактериальной хромосомы и при заражении другой бактерии, встроившись в ее хромосому, передать эти гены. Пе­редача генетического материала от одной бактерии к другой с помо­щью умеренного бактериофага называется трансдукцией. Таким об­разом могут передаваться такие признаки, как устойчивость к антиби­отикам, способность продуцировать какие-либо ферменты. Умеренные бактериофаги применяются в генетической инженерии в качестве век­тора - переносчика генов.
    Практическое значение бактериофагов

    Препараты бактериофагов применяются для диагностики, профи­лактики и лечения. Фагодиагностика основана на специфичности бак­териофагов: видоспецифические бактериофаги лизируют только опре­деленные виды бактерий. Более того, бактерии одного и того же вида различаются по чувствительности к разным типовым бактериофагам, Таким образом можно с помощью набора типовых бактериофагов определять фаговары стафилококков, сальмонелл, вибрионов, Фаготипирование помогает установить источник инфекции и пути передачи.

    Лечебно-профилактическое действие фагов основано на их литической активности.

    Для получения препарата бактериофага культуру бактерий зара­жают бактериофагом. На следующий день лишрованную культуру фильтруют через бактериальный фильтр. К фильтрату в качестве кон­серванта добавляют хинозол.

    Для количественной характеристики бактериофагов используют такой критерий, как титр бактериофага. Титр фага можно выразить двумя показателями:

    1) наибольшее разведение препарата, при котором бактериофаг

    лизирует соответствующие бактерии:

    2) количество активных корпускул бактериофага в 1 мл препарата. Методы титрования бактериофага:

    1) метод серийных разведении в пробирках с жидкой питательной

    средой по Аппсльману;

    2) двуслойный агаровый метод, при котором подсчитывают число негативных колоний фага на фоне сплошного роста бактерий – метод Грациа.

    Готовый жидкий препарат бактериофага должен быть совершен­но прозрачным. При кишечных инфекциях препарат применяют вмес­те с раствором питьевой соды, так как кислое содержимое желудка разрушает бактериофаг. Препараты некоторых бактериофагов для инъекций и местного применения выпускают в ампулах. Для приема внутрь препараты бактериофагов выпускаются также в виде таблеток с кислотоустойчивым покрытием, которое в щелочной среде тонкого кишечника растворяется. В качестве покрытия применяется пектин или ацетилфталилцеллюлоза (ЛФП).

    В нашей стране выпускаются препараты дизентерийного, сальмонсллезного, коли-протейпого, стафилококкового и других бакте­риофагов, а также наборы типовых фагов для фаготиинрования ста­филококков, брюшнотифозных и других бактерий.

    ГЛАВА 8.

    ЭКОЛОГИЧЕСКАЯ МИКРОБИОЛОГИЯ (МИКРОЭКОЛОГИЯ)

    Экологическая микробиология изучает взаимоотношения микро-и макроорганизмов, совместно обитающих в биотопах. Это часть об­щей экологии - науки, изучающей взаимоотношения животных, расте­ний, микроорганизмов между собой и с окружающей средой.

    Основные понятия:

    - биотоп - участок биосферы с относительно однородными усло­виями жизни;

    - популяция - совокупность особей одного вида, обитающих в оп­ределенном биотопе;

    - микробиоценоз - сообщество популяций разных микроорганиз­мов, обитающих в определенном биотопе;

    - экосистема (экологическая система) - совокупность организмов и среды их обитания, то есть система, состоящая из биотопа и биоцено­за; .

    - геосфера - почвенная экосистема;

    - гидросфера - водная экосистема;

    - атмосфера - воздушная экосистема;

    - биосфера - общая сумма всех экосистем, область распространения жизни на Земле.

    В зависимости от среды обитания микроорганизмы разделяют на свободноживущяе и симбионты. Свободноживущие заселяют почву, воду, воздух и различные объекты внешней среды. В природе микроор­ганизмы распространены гораздо шире, чем другие живые существа. Благодаря малым размерам, приспособляемости к изменению условий существования, разнообразию источников питания, микроорганизмы можно обнаружить там, где другие живые существа жить не могут.

    Характеризуя микрофлору почвы, воды и воздуха, целесообразно придерживаться определенного плана:

    1) постоянная микрофлора данной среды;

    2) значение данной среды как фактора передачи возбудителей за­болеваний;

    3) определение микробной флоры.

    При исследовании объектов внешней среды методами санитарной микробиологии определяются количественные показатели - общее ко­личество микроорганизмов в определенном объеме. Важной задачей исследования является обнаружение патогенных микробов и их ток­синов. Однако непосредственное их выявление представляет значи­тельные трудности. Причина в том, что патогенные микроорганизмы встречаются во внешней среде непостоянно, обычно в небольших ко­личествах, их трудно культивировать на питательных средах, некоторые из них вообще не культивируются на искусственных средах. Поэтому возможное загрязнение внешней среды патогенными микробами опре­деляют по косвенному показателю - обнаружению санитарно-показа-тельного микроорганизма.

    В качестве санитарно-показательных выбирают те микробы, ко­торые постоянно и в больших количествах содержатся в тех выделе­ниях человека, которые для данной среды наиболее опасны. Сроки их выживания во внешней среде должны совпадать примерно со сроками выживания патогенных микробов. Санитарно-показательные мик­роорганизмы не должны интенсивно размножаться во внешней среде и должны легко обнаруживаться при лабораторном исследовании.

    Микрофлора почвы

    Почва является основной средой обитания многих микроорга­низмов, которые вместе с растениями и животными составляют раз­нообразные биогеоценозы. Состав микробиоценозов почвы зависит от многих внешних факторов, в том числе от агротехнических меропри­ятий, таких как вспашка, внесение удобрений, ядохимикатов.

    Самый поверхностный тонкий слой почвы содержит мало микро­организмов, так как они погибают под влиянием солнечных лучей и высушивания. Наиболее обильна микрофлора почвы на глубине 10-20 см, а в более глубоких слоях количество микробов уменьшается.

    Видовой состав почвенной микрофлоры весьма разнообразен: ана­эробные и аэробные бактерии, грибы, простейшие, вирусы.

    Значение микрофлоры почвы велико для круговорота веществ в природе. Микробы осуществляют разложение и минерализацию органических животных и растительных остатков, попадающих в по­чву, процесс очищения ее от нечистот и отбросов.

    Среди патогенных микробов имеются такие, для которых почва является постоянным местом обитания. Это возбудители ботулизма, ак-тиномицеты и грибы - возбудители микозов. Вторая группа - это спо-рообразующие бациллы и клостридии, которые попадают в почву с выделениями человека и животных и могут длительно здесь сохраняться в виде спор. Это бациллы сибирской язвы, клостридии столбняка и газовой анаэробной инфекции.

    К третьей группе относятся неспорообразующие бактерии и ви­русы, которые попадают в почву с выделениями человека и живот­ных, сохраняются здесь в течение нескольких дней и месяцев. Это бактерии - возбудители брюшного тифа и дизентерии, палочки ту­беркулеза, лептоспиры, вирусы. Значение почвы как фактора пере­дачи при этих инфекциях относительно невелико.

    Микробиологическое исследование почвы имеет значение при строительстве жилищ, детских учреждений, водохранилищ. Пробы по­чвы берут из глубины. Определяют микробное число - общее количество микроорганизмов в 1 г почвы и наличие санитарно-показательных мик­роорганизмов. Присутствие в почве Escherichia coli и Streptococcus faecalis указывает на свежее фекальное загрязнение, бактерий рода

    Citrobacter и Enterobacter - на несвежее, a Clostridium perfringens - на давнее.

    Микрофлора воды

    Вода открытых водоемов, подобно почве, является естественной средой обитания многих видов бактерий, грибов, вирусов, простей­ших. В воде обитают также различные виды микробов, принимающих участие в круговороте веществ в природе и способствующих самоочи­щению воды благодаря разложению органических соединений. Харак­тер микрофлоры воды зависит от многих причин, и в особенности от загрязнения стоками ливневых, фекальных и промышленных нечистот. По мере удаления от населенных пунктов число микробов постепенно уменьшается. Наиболее чистыми являются воды глубоких артезианс­ких скважин и родников.

    Вода имеет эпидемиологическое значение как фактор передачи ин­фекций. Наблюдались водные эпидемии холеры, брюшного тифа, леп-тоспирозов и других инфекционных болезней.

    Санитарно-гюказательными микроорганизмами для воды являют­ся бактерии группы кишечной палочки (БГКП), принадлежащие к раз­ным родам семейства энтеробактерий. Санитарно-микробиологическое состояние воды оценивается по следующим показателям:

    1) микробное число - общее количество бактерий в 1 мл воды;

    2) коли-титр - наименьший объем воды в миллилитрах, в котором обнаруживаются БГКП;

    3) коли-индекс - количество БГКП в 1 литре воды;

    4) кроме того, в воде определяют наличие патогенных и условнопатогенных микроорганизмов: энтерококков, сальмонелл, холерного вибриона, энтеровирусов.

    В соответствии с ГОСТом на питьевую водопроводную воду, мик­робное число ее должно быть не более 100, коли-титр должен быть не ниже 300, коли-индекс - не более 3.

    Микрофлора воздуха

    В воздух микробы попадают из почвы с поверхностей растений и животных, а также с промышленными отходами некоторых предпри­ятий. В отличие от воды и почвы, где микробы могут размножаться, в воздухе они только сохраняются в течение некоторого времени, а за­тем гибнут вследствие высыхания и влияния солнечных лучей. Ус­тойчивые к таким воздействиям микроорганизмы могут долго сохра­няться в воздухе. Это споры грибов, споры бактерий, сарцины и дру­гие кокки, образующие пигменты. Больше всего микробов в воздухе промышленных городов, меньше всего - в воздухе лесов и гор. В от­крытом воздухе количество микробов летом больше, чем зимой, в воз­духе закрытых помещений - наоборот.

    Воздух может служить фактором передачи патогенных микробов: стафилококков, стрептококков, палочек дифтерии, коклюша, тубер­кулеза, а также вирусов кори, гриппа. Передача воздушно-капельным и воздушно-пылевым путем почти всегда происходит в закрытых по­мещениях и редко - на открытом воздухе.

    Показатели санитарно-микробиологического состояния воздуха

    закрытых помещений:

    - микробное число - количество микробов, обнаруженных в 1 м3

    воздуха;

    - наличие санитарно-показательных бактерий: Streptococcus

    haeraolyticus и Staphylococcus aureus.

    Чистота воздуха зависит от своевременного проветривания по­мещения и влажной уборки. Применяется обработка воздуха бактери­цидными УФ-лампами. Для уменьшения контаминации воздуха при­меняют марлевые и ватно-марлевые маски.

    Микроорганизмы пищевых продуктов

    Пищевые продукты и готовые блюда являются благоприятной сре­дой для размножения микроорганизмов. Некоторые пищевые продукты содержат специфические виды микробов, необходимые для технологии их изготовления, например молочнокислые микробы в кисломолочных продуктах, квашеных овощах, некоторых напитках. Неспецифическая микрофлора - это микробы, случайно попавшие в пищевые продукты из внешней среды. Одни из них не оказывают действия на пищевые продукты, другие вызывают их порчу.

    Пищевые продукты могут быть факторами передачи возбудите­лей кишечных инфекций: дизентерии, холеры, брюшного тифа, а так­же сибирской язвы, бруцеллеза, Ку-лихорадки и других.

    Попадание в пищевые продукты и размножение в них сальмонелл, стафилококков, возбудителей ботулизма приводит к возникновению у человека пищевых токсикоинфекций и интоксикаций.

    Для санитарно-микробиологической оценки пищевых прдуктов оп­ределяют микробное число и санитарно-показательные микроорга­низмы (БГКП), а также наличие патогенных микробов. Санитарно-микробиологические показатели некоторых молочных продуктов, кол­басных, консервированных изделий и других продуктов нормированы ГОСТами.

    Микрофлора различных объектов

    Разнообразные предметы в окружении человека можно разделить на три группы: бытовые, производственные и медицинские. В меди­цинских учреждениях, кроме бытовых предметов, имеются специфи­ческие медицинские объекты. Это медицинские инструменты, обору­дование, перевязочный и шовный материал, лекарственные средства,

    дезинфицирующие растворы, халаты, предметы ухода за больными. В этих объектах могут быть обнаружены как безвредные для человека, так и условно-патогенные и патогенные бактерии. Некоторые возбу­дители инфекционных заболеваний (легионеллы, синегнойная палоч­ка, протей, иерсинии) способны размножаться в ванных комнатах, ду­шевых, раковинах, кондиционерах. Другие микроорганизмы, не раз­множаясь в объектах внешней среды, могут сохраняться здесь в тече­ние сроков, достаточных для того, чтобы могло произойти заражение. Возбудители кори, коклюша могут сохраняться в течение нескольких минут, возбудители туберкулеза - месяцами, а споры палочки сибирской язвы - годами.

    Санитарно-микробиологические иследования проводятся в меди­цинских и детских учреждениях, предприятиях общественного пита­ния и пищевой торговой сети. Определяют бактериологическую заг­рязненность рук работающего персонала и предметов окружающей обстановки путем исследования микрофлоры смывов. В смывах опре­деляют: общее микробное число, наличие БГКП, протея, энтерококка, синегнойной палочки, стафилококка и других патогенных бактерий.

    Роль микроорганизмов в круговороте веществ в природе, в возникновении и существовании биосферы

    На Земле с момента ее возникновения совершается процесс пре­вращения и перемещения веществ, происходит взаимодействие живых существ с неживой природой, а также зеленых растений с животным миром. Роль зеленых растений в том, что они путем фотосинтеза стро­ят органические соединения из минеральных веществ. Кроме того, раз­лагая диоксид углерода, они выделяют в окружающую среду свобод­ный кислород. Животные и бесхлорофильные растения, лишенные спо­собности строить белок из неорганических соединений, нуждаются в готовых органических веществах и питаются растениями или другими животными. Они постепенно разлагают органические вещества, на­копленные зелеными растениями, до более простых соединений с ос­вобождением большого количества энергии. При этом они используют кислород, который выделяют зеленые растения.

    Эта простая и стройная схема взаимоотношений зеленых расте­ний, животных и неживой природы не может объяснить равновесия между живой и неживой природой. Остается неясной причина минера­лизации органических веществ с образованием таких окисленных не­органических соединений, как вода, углекислота, минеральные соли, вполне пригодные для питания растений. В организме животных и ра­стений не все органические вещества окисляются до этих продуктов. С мочой и испражнениями животных, с остатками растений и трупами животных в почву попадает огромное количество органических ве­ществ, непригодных для питания растений. Эти органические остатки завалили бы Землю и сделали бы невозможной дальнейшую жизнь на ней, если бы они не разрушались и не вступали вновь в круговорот веществ в природе. Этот важнейший процесс минерализации органи­ческих соединений осуществляют микробы. Они постепенно разлага­ют сложные органические соединения на простые, доступные для пи­тания растений, и таким образом обеспечивают завершение кругово­рота углерода, азота, фосфора, серы и других элементов. Первым, кто указал на роль микробов как необходимых посредников между живой и неживой природой, был Пастер. Большую роль в изучении участия микробов в круговороте веществ сыграли работы Сергея Николаеви­ча Виноградского и Мартинуса Виллема Бейеринка.

    Круговорот азота (рис. 10). С остатками растений, с трупами жи­вотных в почву попадают сложные азотсодержащие соединения, главным образом, белки. Эти вещества подвергаются гниению (аммо­нификации) с участием гнилостных микроорганизмов. Аэробные гни­лостные бактерии (В. subtilis, В. niesentericus, Proteus vulgaris) осуществ­ляют гидролиз белков до аминокислот, затем до конечных продуктов: сероводорода, аммиака и др. При действии анаэробных гнилостных микробов преобладают восстановительные процессы, и распад бел­ков идет не до конечных продуктов. Разложение мочевины осуществ­ляют уробактерии, с образованием аммиака и углекислоты. Аммоний­ные соли подвергаются дальнейшему окислению нитрифицирующими бактериями. Этот процесс идет в два этапа: 1) одни бактерии окисляют аммонийные соли до нитритов; 2) другие бактерии окисляют нитриты до нитратов. Две фазы нитрификации - это пример метабиоза: один микроб живет, используя продукты жизнедеятельности другого микро­ба. Азотнокислые соли наилучшим образом усваиваются растениями, поэтому образование нитратов повышает плодородие почвы.

    В почве происходит обратный процесс денитрификации - разло­жение нитритов и нитратов денитрифицирующими бактериями с выде­лением свободного азота, что приводит к снижению плодородия почвы.

    В то же время имеются микроорганизмы, которые усваивают ат­мосферный азот и синтезируют азотсодержащие органические соеди­нения. Это две группы микробов: свободноживущие почвенные азот-фиксирующие бактерии и клубеньковые бактерии, живущие в симбио­зе с бобовыми растениями, образуя клубеньки на корнях. Азотфиксиру-ющие бактерии обогащают почву азотом, повышая ее плодородие.

    Круговорот углерода. Зеленые растения и фотосинтезирующие бак­терии усваивают диоксид углерода (СО2) атмосферного воздуха, син­тезируя углеводы (глюкозу, фруктозу), полимерные соединения: цел­люлозу, крахмал, пектин. Образовавшиеся органические соединения используются человеком и животными для питания. После гибели рас­тений и животных органические вещества попадают в почву.

    Возвращение диоксида углерода в атмосферу происходит в про­цессе окисления аэробными микроорганизмами углеводов с образова­нием СО2, в процессе брожения. Микробная природа брожений была впервые установлена Пастером. В зависимости от образующихся про-

    дуктов различают следующие виды брожения: спиртовое, уксуснокис­лое, молочнокислое, маслянокислое, а также разложение целлюлозы (клетчатки). Микроорганизмы, вызывающие брожение, имеют про­мышленное значение.

    Спиртовое брожение - распад углеводов с образованием этило­вого спирта и диоксида углерода - вызывают дрожжевые грибы. Этот вид брожения известен давно и используется при изготовлении спирт­ных напитков.

    Уксуснокислые бактерии окисляют этиловый спирт в аэробных ус­ловиях до уксусной кислоты. Они используются в промышленности, но при попадании в вино или пиво могут приводить к их порче.

    Молочнокислое брожение вызывают лактобактерии. Конечным продуктом процесса является молочная кислота, которая губительно действует на гнилостные микробы кишечника. Молочнокислые бакте­рии применяют для изготовления кисломолочных продуктов: просток­ваши, йогурта, ацидофилина. Препарат лактобактерии, применяемый для устранения дисбактериоза, содержит культуру живых молочно­кислых бактерий.

    Маслянокислое брожение осуществляют анаэробные бактерии. Ко­нечным продуктом брожения является масляная кислота, образование которой вызывает порчу консервированных продуктов.

    Процессы разложения клетчатки, составляющей оболочку расти­тельных клеток, и брожение пектина - межклеточного вещества рас­тений - имеют большое значение в круговороте углерода в природе.

    Круговорот серы, фосфора, железа

    Круговорот серы совершается в результате жизнедеятельности бак­терий, причем одни из них окисляют серу, другие - восстанавливают.

    Фосфор освобождается из органических соединений в результате процессов гниения. Фосфорные бактерии, находящиеся в почве и в воде, в процессе своей жизнедеятельности переводят нерастворимые соединения фосфора в растворимые.

    Круговорот железа осуществляют железобактерии, живущие в воде. Они используют растворимые соли железа как источник энергии, окис­ляя их до окисных соединений, нерастворимых в воде. Образующийся осадок откладывается в оболочке бактерий. Иногда большое количе­ство железобактерий, накапливаясь в просветах водопроводных труб, вызывает их сужение и закупорку.

    Микробиологические аспекты охраны окружающей среды

    Задачей охраны окружающей среды является сохранение эколо­гического равновесия в биосфере. Микробиологические аспекты сос­тоят в следующем:

    1) охрана микроорганизмов, участвующих в круговороте веществ в природе. Сброс в почву и воду промышленных и автомобильных от­ходов приводит к гибели почвенных микробов, осуществляющих про­цессы минерализации органических веществ, а это в свою очередь, ве­дет к накоплению неразложившихся органических веществ, к умень­шению количества нитратов в почве, снижению ее плодородия.

    2) охрана микроорганизмов, осуществляющих биодеградацию, то есть разрушение вредных для человека веществ, которые обычно не встречаются в природе и попадают во внешнюю среду в результате деятельности человека. С другой стороны, подавление развития мик­роорганизмов, вызывающих порчу пищевых продуктов и лекарств или разрушение различных материалов и приборов;

    3) защита биосферы от загрязнения (контаминации) патогенными и условно-патогенными микроорганизмами.

    С прогрессом науки возникают новые аспекты. С развитием ге­нетической инженерии возникла проблема защиты природы от искусс­твенно полученных рекомбинантов, а с освоением космоса - защита от заноса на нашу планету внеземных и попадания в космос земных микроорганизмов.
    1   2   3   4   5   6   7   8   9   ...   24


    написать администратору сайта